(k, s)-Riemann-Liouville fractional integral and applications

被引:127
|
作者
Sarikaya, Mehmet Zeki [1 ]
Dahmani, Zoubir [2 ]
Kiris, Mehmet Eyup [3 ]
Ahmad, Farooq [4 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Univ Mostaganem, UMAB, Lab Pure & Appl Math, Mostaganem, Algeria
[3] Afyon Kocatepe Univ, Fac Sci & Arts, Dept Math, Afyon, Turkey
[4] Majmaah Univ, Colleege Sci, Dept Math, Al Zulfi, Saudi Arabia
来源
关键词
Riemann-Liouville fractional integrals; synchronous function; Chebyshev inequality; Holder inequality; INEQUALITIES;
D O I
10.15672/HJMS.20164512484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new approach on fractional integration, which generalizes the Riemann-Liouville fractional integral. We prove some properties for this new approach. We also establish some new integral inequalities using this new fractional integration.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [41] New Results on r,k,μ-Riemann-Liouville Fractional Operators in Complex Domain with Applications
    Tayyah, Adel Salim
    Atshan, Waggas Galib
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [42] NEW GENERAL INTEGRAL INEQUALITIES FOR LIPSCHITZIAN FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS AND APPLICATIONS
    Iscan, Imdat
    Kunt, Mehmet
    Gozutok, Nazli Yazici
    Koroglu, Tuncay
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 1 - 12
  • [43] On Some Properties of Riemann-Liouville Fractional Operator in Orlicz Spaces and Applications to Quadratic Integral Equations
    Metwali, Mohamed M. A.
    [J]. FILOMAT, 2022, 36 (17) : 6009 - 6020
  • [44] Riemann-Liouville fractional integral type exponential sampling Kantorovich series
    Kursun, Sadettin
    Aral, Ali
    Acar, Tuncer
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [45] UPPER BOX DIMENSION OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OF FRACTAL FUNCTIONS
    Liang, Y. S.
    Wang, H. X.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
  • [46] Mesoscopic fractional kinetic equations versus a Riemann-Liouville integral type
    Nigmatullin, Raoul R.
    Trujillo, Juan J.
    [J]. ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 155 - +
  • [47] Montgomery Identity and Ostrowski Type Inequalities for Riemann-Liouville Fractional Integral
    Aljinovic, Andrea Aglic
    [J]. JOURNAL OF MATHEMATICS, 2014, 2014
  • [48] Integral-Type Fractional Equations with a Proportional Riemann-Liouville Derivative
    Mlaiki, Nabil
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [49] Extended Riemann-Liouville fractional derivative operator and its applications
    Agarwal, Praveen
    Choi, Junesang
    Paris, R. B.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 451 - 466
  • [50] The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II
    Paulo Mendes Carvalho Neto
    Renato Fehlberg Júnior
    [J]. Fractional Calculus and Applied Analysis, 2024, 27 : 1348 - 1368