CIRCULATORY INTEGRAL AND ROUTH'S EQUATIONS OF LAGRANGE SYSTEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

被引:0
|
作者
Fu, Jing-Li [1 ]
Zhang, Lijun [2 ]
Khalique, Chaudry [3 ]
Guo, Ma-Li [4 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Coll Mech & Automot Engn, Hangzhou, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Shandong, Peoples R China
[3] North West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, Mafikeng Campus, Mmabatho, South Africa
[4] Zhejiang Sci Tech Univ, Inst Math Phys, Hangzhou, Peoples R China
来源
THERMAL SCIENCE | 2021年 / 25卷 / 02期
关键词
circulatory integral; routh's equation; Lagrange system; Riemann-Liouville fractional derivatives;
D O I
10.2298/TSCI200520034F
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, the circulatory integral and Routh's equations of Lagrange systems are established with Riemann-Liouville fractional derivatives, and the circulatory integral of Lagrange systems is obtained by making use of the relationship between Riemann-Liouville fractional integrals and fractional derivatives. Thereafter, the Routh's equations of Lagrange systems are given based on the fractional circulatory integral. Two examples are presented to illustrate the application of the results.
引用
收藏
页码:1355 / 1363
页数:9
相关论文
共 50 条
  • [21] Systems of fractional Langevin equations of Riemann-Liouville and Hadamard types
    Weerawat Sudsutad
    Sotiris K Ntouyas
    Jessada Tariboon
    [J]. Advances in Difference Equations, 2015
  • [22] The general solution of impulsive systems with Riemann-Liouville fractional derivatives
    Zhang, Xianmin
    Ding, Wenbin
    Peng, Hui
    Liu, Zuohua
    Shu, Tong
    [J]. OPEN MATHEMATICS, 2016, 14 : 1125 - 1137
  • [23] Mixed problems of fractional coupled systems of Riemann-Liouville differential equations and Hadamard integral conditions
    Ntouyas, S. K.
    Tariboon, Jessada
    Thiramanus, Phollakrit
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (05) : 813 - 828
  • [24] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    [J]. Boundary Value Problems, 2014
  • [25] Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives
    Zhang Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (08)
  • [26] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. BOUNDARY VALUE PROBLEMS, 2014,
  • [28] Fractional diffusion based on Riemann-Liouville fractional derivatives
    Hilfer, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16): : 3914 - 3917
  • [29] Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives
    Fan, Zhenbin
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (03): : 516 - 524
  • [30] Fractional Noether's Theorem with Classical and Riemann-Liouville Derivatives
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6885 - 6890