Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 μm probe

被引:121
|
作者
Tani, M [1 ]
Lee, KS [1 ]
Zhang, XC [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
关键词
D O I
10.1063/1.1289914
中图分类号
O59 [应用物理学];
学科分类号
摘要
THz radiation is detected by a low-temperature-grown GaAs (LT-GaAs) photoconductive antenna probed with a 1.55 mu m probe laser. The detection efficiency is found to be approximately 10% of that obtained with a 780 nm probe. From the nonquadratic dependence of photoconductivity on laser intensity, two-step photoabsorption mediated by midgap states in LT-GaAs is suggested, instead of the two-photon absorption, as the primary process for the photoconductivity. (C) 2000 American Institute of Physics. [S0003-6951(00)01335-8].
引用
收藏
页码:1396 / 1398
页数:3
相关论文
共 50 条
  • [1] Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters
    Shen, YC
    Upadhya, PC
    Linfield, EH
    Beere, HE
    Davies, AG
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (15) : 3117 - 3119
  • [2] Measurement and Analysis of Noise Spectra in Terahertz Wave Detection Utilizing Low-Temperature-Grown GaAs Photoconductive Antenna
    Nitta, Masahiro
    Nakamura, Ryota
    Kadoya, Yutaka
    [J]. JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2019, 40 (11-12) : 1150 - 1159
  • [3] Measurement and Analysis of Noise Spectra in Terahertz Wave Detection Utilizing Low-Temperature-Grown GaAs Photoconductive Antenna
    Masahiro Nitta
    Ryota Nakamura
    Yutaka Kadoya
    [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40 : 1150 - 1159
  • [4] Effect of Doped Buffer in Low-Temperature-Grown GaAs Terahertz Photoconductive Antenna Emitters and Detectors
    Prieto, Elizabeth Ann
    De los Reyes, Alexander
    Vistro, Victor D. C. Andres
    Cabello, Neil Irvin
    Faustino, Maria Angela
    Ferrolino, John Paul
    Vasquez, John Daniel
    Bardolaza, Hannah
    Afalla, Jessica Pauline
    Mag-usara, Valynn Katrine
    Kitahara, Hideaki
    Tani, Masahiko
    Somintac, Armando
    Salvador, Arnel
    Estacio, Elmer
    [J]. 2020 45TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2020,
  • [5] Colloidal upconversion nanocrystals enable low-temperature-grown GaAs photoconductive switch operating at λ=1.55 μm
    Xiang, Hengyang
    Chaudhary, Mahima
    Tripon-Canseliet, Charlotte
    Chen, Zhuoying
    [J]. NANOTECHNOLOGY, 2021, 32 (45)
  • [6] Role of low-temperature-grown GaAs substrate of photoconductive antenna in broadband terahertz time domain spectroscopy
    Shimosato, H.
    Katayama, L.
    Saito, S.
    Ashida, M.
    Itoh, T.
    Kadoya, Y.
    Sakai, K.
    [J]. 2007 JOINT 32ND INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 15TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, VOLS 1 AND 2, 2007, : 477 - +
  • [7] Two Photon Absorption Effect of Terahertz Radiation from Low-Temperature-Grown GaAs Photoconductive Antennas
    Yang, Chan-Shan
    Pan, Ci-Ling
    Lee, Chao-Kuei
    Lin, Sung-Hui
    [J]. 2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [8] A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection
    Rios, Ruben Dario Velasquez
    Bikorimana, Simeon
    Ummy, Muhammad Ali
    Dorsinville, Roger
    Seo, Sang-Woo
    [J]. JOURNAL OF OPTICS, 2015, 17 (12)
  • [9] Terahertz photomixing in low-temperature-grown GaAs
    Brown, ER
    Verghese, S
    McIntosh, KA
    [J]. ADVANCED TECHNOLOGY MMW, RADIO, AND TERAHERTZ TELESCOPES, 1998, 3357 : 132 - 142
  • [10] Generation and Detection of Terahertz Waves Using Low-Temperature-Grown GaAs with an Annealing Process
    Moon, Kiwon
    Choi, Jeongyong
    Shin, Jun-Hwan
    Han, Sang-Pil
    Ko, Hyunsung
    Kim, Namje
    Park, Jeong-Woo
    Yoon, Young-Jong
    Kang, Kwang-Yong
    Ryu, Han-Cheol
    Park, Kyung Hyun
    [J]. ETRI JOURNAL, 2014, 36 (01) : 159 - 162