A high-temperature ferromagnetic topological insulating phase by proximity coupling

被引:386
|
作者
Katmis, Ferhat [1 ,2 ,3 ]
Lauter, Valeria [4 ]
Nogueira, Flavio S. [5 ,6 ]
Assaf, Badih A. [7 ,8 ]
Jamer, Michelle E. [7 ]
Wei, Peng [1 ,2 ,3 ]
Satpati, Biswarup [9 ]
Freeland, John W. [10 ]
Eremin, Ilya [5 ]
Heiman, Don [7 ]
Jarillo-Herrero, Pablo [1 ]
Moodera, Jagadeesh S. [1 ,2 ,3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Francis Bitter Magnet Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA
[5] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44801 Bochum, Germany
[6] Inst Festkoerper & Werkstoffforsch Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany
[7] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[8] Paris Sci & Lettres Res Univ, CNRS, Ecole Normale Super, Dept Phys, F-75005 Paris, France
[9] Saha Inst Nucl Phys, 1-AF Bidhannagar, Kolkata 64, India
[10] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
MAJORANA FERMIONS; SURFACE;
D O I
10.1038/nature17635
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry(1,)2, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices(3-5). Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena(6,7). In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends similar to 2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator(2,8) could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.
引用
收藏
页码:513 / +
页数:11
相关论文
共 50 条
  • [41] Electrically insulating high-temperature joints for ferritic chromium steel
    Schwickert, T., 1600, Soc. for the Advancement of Material and Process Engineering (35):
  • [42] High-temperature coatings for heat-insulating fiber materials
    S. S. Solntsev
    V. A. Rozenenkova
    N. A. Mironova
    G. A. Solov’eva
    Glass and Ceramics, 2013, 70 : 188 - 191
  • [43] Realizing Majorana zero modes by proximity effect between topological insulators and d-wave high-temperature superconductors
    Li, Zi-Xiang
    Chan, Cheung
    Yao, Hong
    PHYSICAL REVIEW B, 2015, 91 (23):
  • [44] PIEZOELECTRIC CERAMICS WITH HIGH COUPLING AND HIGH-TEMPERATURE STABILITY
    ZHONG, WL
    ZHANG, PL
    LIU, SD
    FERROELECTRICS, 1990, 101 : 173 - 177
  • [45] Tunable proximity effects and topological superconductivity in ferromagnetic hybrid nanowires
    Escribano, Samuel D.
    Prada, Elsa
    Oreg, Yuval
    Yeyati, Alfredo Levy
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [46] Numerical Simulation of Three-Phase Coupling for High-Temperature Lithium Heat Pipe
    Mao S.
    Zhou T.
    Liu W.
    Wei D.
    Xue C.
    Hedongli Gongcheng/Nuclear Power Engineering, 2022, 43 (06): : 37 - 42
  • [47] High-temperature ferromagnetic semiconductors: Janus monolayer vanadium trihalides
    Ren, Yulu
    Li, Qiaoqiao
    Wan, Wenhui
    Liu, Yong
    Ge, Yanfeng
    PHYSICAL REVIEW B, 2020, 101 (13)
  • [48] Strain-induced high-temperature perovskite ferromagnetic insulator
    Meng, Dechao
    Guo, Hongli
    Cui, Zhangzhang
    Ma, Chao
    Zhao, Jin
    Lu, Jiangbo
    Xu, Hui
    Wang, Zhicheng
    Hu, Xiang
    Fu, Zhengping
    Peng, Ranran
    Guo, Jinghua
    Zhai, Xiaofang
    Brown, Gail J.
    Knize, Randy
    Lu, Yalin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (12) : 2873 - 2877
  • [49] High-temperature thermodynamics of the ferromagnetic Kondo-lattice model
    Roder, H
    Singh, RRP
    Zang, J
    PHYSICAL REVIEW B, 1997, 56 (09) : 5084 - 5087
  • [50] HEATING CHAMBER FOR HIGH-TEMPERATURE INVESTIGATION OF FERROMAGNETIC AND DIELECTRIC MATERIALS
    KUTAEVSK.AF
    GIRZHMAN, NI
    INDUSTRIAL LABORATORY, 1966, 32 (01): : 135 - &