A high-temperature ferromagnetic topological insulating phase by proximity coupling

被引:386
|
作者
Katmis, Ferhat [1 ,2 ,3 ]
Lauter, Valeria [4 ]
Nogueira, Flavio S. [5 ,6 ]
Assaf, Badih A. [7 ,8 ]
Jamer, Michelle E. [7 ]
Wei, Peng [1 ,2 ,3 ]
Satpati, Biswarup [9 ]
Freeland, John W. [10 ]
Eremin, Ilya [5 ]
Heiman, Don [7 ]
Jarillo-Herrero, Pablo [1 ]
Moodera, Jagadeesh S. [1 ,2 ,3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Francis Bitter Magnet Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA
[5] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44801 Bochum, Germany
[6] Inst Festkoerper & Werkstoffforsch Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany
[7] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[8] Paris Sci & Lettres Res Univ, CNRS, Ecole Normale Super, Dept Phys, F-75005 Paris, France
[9] Saha Inst Nucl Phys, 1-AF Bidhannagar, Kolkata 64, India
[10] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
MAJORANA FERMIONS; SURFACE;
D O I
10.1038/nature17635
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry(1,)2, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices(3-5). Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena(6,7). In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends similar to 2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator(2,8) could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.
引用
收藏
页码:513 / +
页数:11
相关论文
共 50 条
  • [31] High-Temperature Heat-Insulating Materials in Hydrogenous Atmospheres
    Rank, J.
    Melzer, D.
    Ullrich, B.
    Wulf, R.
    Anerziris, Ch.
    Walter, G.
    CFI-CERAMIC FORUM INTERNATIONAL, 2008, 85 (10): : E50 - E53
  • [32] Controlling heat radiation for development of high-temperature insulating materials
    Akamine, Shuko
    Fujita, Mitsuhiro
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (15) : 4031 - 4036
  • [33] Electrically insulating high-temperature joints for ferritic chromium steel
    Schwickert, T
    Reisgen, U
    Geasee, P
    Conradt, R
    JOURNAL OF ADVANCED MATERIALS, 2003, 35 (04): : 44 - 47
  • [34] High-temperature heat-insulating materials based on vermiculite
    Suvorov, SA
    Skurikhin, VV
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2002, 43 (11-12) : 383 - 389
  • [35] High-Temperature Heat-Insulating Materials Based on Vermiculite
    S. A. Suvorov
    V. V. Skurikhin
    Refractories and Industrial Ceramics, 2002, 43 : 383 - 389
  • [36] INVESTIGATION OF INSULATING MATERIALS FOR HIGH-TEMPERATURE GAS INSULATED SYSTEMS
    TAHILIANI, VH
    REIGHTER, DH
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1978, 97 (04): : 1011 - 1011
  • [37] BEHAVIOR OF VARIOUS INSULATING FILMS IN HIGH-TEMPERATURE WATER AND MOISTURE
    MAEDA, K
    SATO, J
    BAN, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1977, 16 (05) : 729 - 736
  • [38] THE ROLE OF THE INSULATING LAYERS IN THE HIGH-TEMPERATURE SUPERCONDUCTORS - THE CALCULATION OF TC
    CRISAN, M
    VACARU, D
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 78 (02): : 213 - 218
  • [39] PR IN HIGH-TEMPERATURE SUPERCONDUCTORS - INSULATING PLANES, METALLIC CHAINS
    KHOMSKII, D
    PHYSICA B, 1994, 199 : 328 - 329
  • [40] High-temperature coatings for heat-insulating fiber materials
    Solntsev, S. S.
    Rozenenkova, V. A.
    Mironova, N. A.
    Solov'eva, G. A.
    GLASS AND CERAMICS, 2013, 70 (5-6) : 188 - 191