A high-temperature ferromagnetic topological insulating phase by proximity coupling

被引:386
|
作者
Katmis, Ferhat [1 ,2 ,3 ]
Lauter, Valeria [4 ]
Nogueira, Flavio S. [5 ,6 ]
Assaf, Badih A. [7 ,8 ]
Jamer, Michelle E. [7 ]
Wei, Peng [1 ,2 ,3 ]
Satpati, Biswarup [9 ]
Freeland, John W. [10 ]
Eremin, Ilya [5 ]
Heiman, Don [7 ]
Jarillo-Herrero, Pablo [1 ]
Moodera, Jagadeesh S. [1 ,2 ,3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Francis Bitter Magnet Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA
[5] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44801 Bochum, Germany
[6] Inst Festkoerper & Werkstoffforsch Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany
[7] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[8] Paris Sci & Lettres Res Univ, CNRS, Ecole Normale Super, Dept Phys, F-75005 Paris, France
[9] Saha Inst Nucl Phys, 1-AF Bidhannagar, Kolkata 64, India
[10] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
MAJORANA FERMIONS; SURFACE;
D O I
10.1038/nature17635
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry(1,)2, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices(3-5). Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena(6,7). In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends similar to 2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator(2,8) could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.
引用
收藏
页码:513 / +
页数:11
相关论文
共 50 条
  • [11] High-temperature ferromagnetic LaCoO 3 triggered by interfacial electron transfer and exchange coupling
    Ji, Yaoyao
    Hu, Shilin
    Liu, Junhua
    Wei, Long
    Luo, Chen
    Ukleev, Victor
    Radu, Florin
    Yan, Wensheng
    Chen, Dachuan
    Zhong, Zhicheng
    Gan, Yulin
    Chen, Kai
    Liao, Zhaoliang
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [12] Magnonic proximity effect in insulating ferromagnetic and antiferromagnetic trilayers
    Brehm, Verena
    Evers, Martin
    Ritzmann, Ulrike
    Nowak, Ulrich
    PHYSICAL REVIEW B, 2022, 105 (10)
  • [13] Stability of the high-temperature phase in composites with a specified distribution of ferromagnetic and paramagnetic regions
    Libman M.A.
    Estrin E.I.
    Steel in Translation, 2014, 44 (10) : 779 - 781
  • [14] Ferromagnetic topological crystalline insulating phase in the π-stacked graphene nanobelts under a small pressure
    Wierzbowska, Malgorzata
    SN APPLIED SCIENCES, 2019, 1 (07):
  • [15] Ferromagnetic response of a "high-temperature" quantum antiferromagnet
    Wang, Xin
    Sensarma, Rajdeep
    Das Sarma, Sankar
    PHYSICAL REVIEW B, 2014, 89 (12):
  • [16] High-temperature resistivity of degenerate ferromagnetic semiconductors
    Nagaev, EL
    PHYSICS LETTERS A, 1999, 255 (4-6) : 336 - 342
  • [17] High-temperature resistivity of degenerate ferromagnetic semiconductors
    Nagaev, E.L.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 255 (4-6): : 336 - 342
  • [18] Carbon foam - A new high-temperature insulating material
    Rinn, Guenter
    CFI-CERAMIC FORUM INTERNATIONAL, 2006, 83 (08): : E40 - E42
  • [19] Quantum interference effects in a 3D topological insulator with high-temperature bulk-insulating behavior
    Zhao, Weiyao
    Xing, Kaijian
    Chen, Lei
    Vu, Thi-Hai-Yen
    Akhgar, Golrokh
    He, Yahua
    Bake, Abdulhakim
    Wang, Xiaolin
    Karel, Julie
    APPLIED PHYSICS REVIEWS, 2024, 11 (01)