Unbiased Adaptive LASSO Parameter Estimation for Diffusion Processes

被引:1
|
作者
Lindstrom, Erik [1 ]
Hook, Josef [2 ]
机构
[1] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
[2] Swedbank, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
关键词
Statistical Data analysis; Grey box modelling; Continuous time system identification; computational econometrics; convex optimization; STOCHASTIC DIFFERENTIAL-EQUATIONS; MAXIMUM-LIKELIHOOD-ESTIMATION; ORACLE PROPERTIES; REGRESSION; SELECTION; MODELS;
D O I
10.1016/j.ifacol.2018.09.144
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The adaptive Least Absolute Shrinkage and Selection Operator (aLASSO) method is an algorithm for simultaneous model selection and parameter estimation with oracle properties. In this work we derive an adaptive LASSO type estimator for diffusion driven stochastic differential equation under weak conditions, specifically that the algorithm does not rely on high frequency properties. All conditional moments needed in our quasi likelihood function are computed from the Kolmogorov Backward equation. This means that a single equation is solved numerically, regardless of the number of observations. The LASSO problem is solved using the Alternating Direction Method of Multipliers (ADMM) method. Our simulations show that the resulting algorithm is able to find the correct model with high probability while obtaining unbiased parameter estimates when evaluated on two qualitatively different data sets. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [21] ROBUST ESTIMATION OF DISPERSION PARAMETER IN DISCRETELY OBSERVED DIFFUSION PROCESSES
    Song, Junmo
    STATISTICA SINICA, 2017, 27 (01) : 373 - 388
  • [22] ON PARAMETER ESTIMATION FOR DIFFUSION PROCESSES IN REAL-TIME BIOSENSORS
    Shamaiah, Manohar
    Shen, Xiaohu
    Vikalo, Haris
    2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 1090 - 1094
  • [23] On unbiased density estimation for ergodic diffusion
    Kutoyants, YA
    STATISTICS & PROBABILITY LETTERS, 1997, 34 (02) : 133 - 140
  • [24] An Adaptive Hybrid Indoor WiFi Fingerprinting and Propagation Parameter Estimation Using RANSAC LASSO Regression
    Chen, Shaojian
    Li, Zihao
    Long, Yunliang
    2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC-BEIJING), 2017,
  • [25] UNBIASED PARAMETER ESTIMATION FOR PARTIALLY OBSERVED DIFFUSIONS
    Awadelkarim, Elsiddig
    Jasra, Ajay
    Ruzayqat, Hamza
    SIAM Journal on Control and Optimization, 2024, 62 (05) : 2664 - 2694
  • [26] UNBIASED ESTIMATION OF THE PARAMETER OF A SELECTED BINOMIAL POPULATION
    TAPPIN, L
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (04) : 1067 - 1083
  • [27] UNBIASED ESTIMATION OF SCALE PARAMETER OF CAUCHY DENSITY
    SINGH, R
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1866 - &
  • [28] UNBIASED ESTIMATION OF THE PARAMETER OF AN EXPONENTIAL-DISTRIBUTION
    BELYAYEV, YK
    MAKAROV, AP
    ENGINEERING CYBERNETICS, 1982, 20 (03): : 78 - 81
  • [29] GENERALIZED PSEUDOINVERSE ALGORITHM FOR UNBIASED PARAMETER ESTIMATION
    SEN, A
    SINHA, NK
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1975, 6 (12) : 1103 - 1109
  • [30] UNBIASED PARAMETER ESTIMATION BY MEANS OF AUTOCORRELATION FUNCTIONS
    MERHAV, SJ
    GABAY, E
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (03) : 368 - 372