UNBIASED PARAMETER ESTIMATION FOR PARTIALLY OBSERVED DIFFUSIONS

被引:0
|
作者
Awadelkarim, Elsiddig [1 ]
Jasra, Ajay [2 ]
Ruzayqat, Hamza [3 ]
机构
[1] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R China
[3] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
unbiased estimation; Markovian stochastic approximation; parameter estimation; diffusion processes; STOCHASTIC-APPROXIMATION; STABILITY; MODELS;
D O I
10.1137/23M160298X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we consider the estimation of static parameters for a partially observed diffusion process with discrete-time observations over a fixed time interval. In particular, we assume that one must time-discretize the partially observed diffusion process and work with the model with bias and consider maximizing the resulting log-likelihood. Using a novel double randomization scheme, based upon Markovian stochastic approximation we develop a new method to, in principle, unbiasedly estimate the static parameters, that is, to obtain the maximum likelihood estimator with no time discretization bias. Under appropriate mathematical assumptions we prove that our estimator is unbiased and investigate the method in several numerical examples, showing that it can empirically outperform the unbiased method in [J. Heng, J. Houssineau, and A. Jasra, J. Mach. Learn. Res ., 25 (2024)].
引用
收藏
页码:2664 / 2694
页数:31
相关论文
共 50 条
  • [1] On Unbiased Estimation for Partially Observed Diffusions
    Heng, Jeremy
    Houssineau, Jeremie
    Jasra, Ajay
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 66
  • [2] Unbiased estimation of the Hessian for partially observed diffusions
    Chada, Neil K.
    Jasra, Ajay
    Yu, Fangyuan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [3] On unbiased score estimation for partially observed diffusions
    Heng, Jeremy
    Houssineau, Jeremie
    Jasra, Ajay
    arXiv, 2021,
  • [4] Unbiased estimation of the Hessian for partially observed diffusions
    Chada, Neil K.
    Jasra, Ajay
    Yu, Fangyuan
    arXiv, 2021,
  • [5] Online parameter estimation for partially observed diffusions
    Poyiadjis, George
    Singh, Sumeetpal S.
    Doucet, Arnaud
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 197 - +
  • [6] Parameter estimation for partially observed hypoelliptic diffusions
    Pokern, Yvo
    Stuart, Andrew M.
    Wiberg, Petter
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 49 - 73
  • [7] UNBIASED FILTERING OF A CLASS OF PARTIALLY OBSERVED DIFFUSIONS
    Jasra, Ajay
    Law, Kody J. H.
    Yu, Fangyuan
    ADVANCES IN APPLIED PROBABILITY, 2022, 54 (03) : 661 - 687
  • [9] CONSISTENT PARAMETER-ESTIMATION FOR PARTIALLY OBSERVED DIFFUSIONS WITH SMALL NOISE
    JAMES, MR
    LEGLAND, F
    APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 32 (01): : 47 - 72
  • [10] PARAMETER-IDENTIFICATION FOR PARTIALLY OBSERVED DIFFUSIONS
    DABBOUS, TE
    AHMED, NU
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (01) : 33 - 50