Unbiased Adaptive LASSO Parameter Estimation for Diffusion Processes

被引:1
|
作者
Lindstrom, Erik [1 ]
Hook, Josef [2 ]
机构
[1] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
[2] Swedbank, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
关键词
Statistical Data analysis; Grey box modelling; Continuous time system identification; computational econometrics; convex optimization; STOCHASTIC DIFFERENTIAL-EQUATIONS; MAXIMUM-LIKELIHOOD-ESTIMATION; ORACLE PROPERTIES; REGRESSION; SELECTION; MODELS;
D O I
10.1016/j.ifacol.2018.09.144
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The adaptive Least Absolute Shrinkage and Selection Operator (aLASSO) method is an algorithm for simultaneous model selection and parameter estimation with oracle properties. In this work we derive an adaptive LASSO type estimator for diffusion driven stochastic differential equation under weak conditions, specifically that the algorithm does not rely on high frequency properties. All conditional moments needed in our quasi likelihood function are computed from the Kolmogorov Backward equation. This means that a single equation is solved numerically, regardless of the number of observations. The LASSO problem is solved using the Alternating Direction Method of Multipliers (ADMM) method. Our simulations show that the resulting algorithm is able to find the correct model with high probability while obtaining unbiased parameter estimates when evaluated on two qualitatively different data sets. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [31] Unbiased parameter estimation for the identification of bilinear systems
    Meddeb, S
    Tourneret, JY
    Castanie, F
    PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, : 176 - 180
  • [32] Tuning parameter selection for the adaptive LASSO in the autoregressive model
    Kwon, Sunghoon
    Lee, Sangin
    Na, Okyoung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (02) : 285 - 297
  • [33] Parameter estimation for multivariate diffusion processes with the time inhomogeneously positive semidefinite diffusion matrix
    Du, Xiu-Li
    Lin, Jin-Guan
    Zhou, Xiu-Qing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11010 - 11025
  • [34] Tuning Parameter Selection for the Adaptive Lasso Using ERIC
    Hui, Francis K. C.
    Warton, David I.
    Foster, Scott D.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 262 - 269
  • [35] Tuning parameter selection for the adaptive LASSO in the autoregressive model
    Sunghoon Kwon
    Sangin Lee
    Okyoung Na
    Journal of the Korean Statistical Society, 2017, 46 : 285 - 297
  • [36] Adaptive sequential estimation for ergodic diffusion processes in quadratic metric
    Galtchouk, L. I.
    Pergamenshchikov, S. M.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (02) : 255 - 285
  • [37] A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes
    Sutter, Tobias
    Ganguly, Arnab
    Koeppl, Heinz
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [38] Estimation of Drift Parameter and Change Point for Switching Fractional Diffusion Processes
    Mishra, M. N.
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (04) : 664 - 686
  • [39] CONSISTENT PARAMETER ESTIMATION FOR LASSO AND APPROXIMATE MESSAGE PASSING
    Mousavi, Ali
    Maleki, Arian
    Baraniuk, Richard G.
    ANNALS OF STATISTICS, 2018, 46 (01): : 119 - 148
  • [40] CONSISTENT PARAMETER ESTIMATION FOR LASSO AND APPROXIMATE MESSAGE PASSING
    Mousavi, Ali
    Maleki, Arian
    Baraniuk, Richard G.
    ANNALS OF STATISTICS, 2017, 45 (06): : 2427 - 2454