Unbiased Adaptive LASSO Parameter Estimation for Diffusion Processes

被引:1
|
作者
Lindstrom, Erik [1 ]
Hook, Josef [2 ]
机构
[1] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
[2] Swedbank, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
关键词
Statistical Data analysis; Grey box modelling; Continuous time system identification; computational econometrics; convex optimization; STOCHASTIC DIFFERENTIAL-EQUATIONS; MAXIMUM-LIKELIHOOD-ESTIMATION; ORACLE PROPERTIES; REGRESSION; SELECTION; MODELS;
D O I
10.1016/j.ifacol.2018.09.144
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The adaptive Least Absolute Shrinkage and Selection Operator (aLASSO) method is an algorithm for simultaneous model selection and parameter estimation with oracle properties. In this work we derive an adaptive LASSO type estimator for diffusion driven stochastic differential equation under weak conditions, specifically that the algorithm does not rely on high frequency properties. All conditional moments needed in our quasi likelihood function are computed from the Kolmogorov Backward equation. This means that a single equation is solved numerically, regardless of the number of observations. The LASSO problem is solved using the Alternating Direction Method of Multipliers (ADMM) method. Our simulations show that the resulting algorithm is able to find the correct model with high probability while obtaining unbiased parameter estimates when evaluated on two qualitatively different data sets. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [1] ADAPTIVE LASSO-TYPE ESTIMATION FOR MULTIVARIATE DIFFUSION PROCESSES
    De Gregorio, Alessandro
    Iacus, Stefano M.
    ECONOMETRIC THEORY, 2012, 28 (04) : 838 - 860
  • [2] Unbiased estimation using a class of diffusion processes
    Ruzayqat, Hamza
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kantas, Nikolas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [3] Adaptive estimation in diffusion processes
    Hoffmann, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 79 (01) : 135 - 163
  • [4] Estimation for the parameter of a class of diffusion processes
    Wei, Chao
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 279 - 290
  • [5] Estimation for the parameter of a class of diffusion processes
    Wei, Chao (chaowei0806@aliyun.com), 1600, Forum-Editrice Universitaria Udinese SRL (43):
  • [6] Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes
    Kang, Wanmo
    Lee, Jong Mun
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 334 - 353
  • [7] Adaptive estimation for degenerate diffusion processes
    Gloter, Arnaud
    Yoshida, Nakahiro
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1424 - 1472
  • [8] A Multiresolution Method for Parameter Estimation of Diffusion Processes
    Kou, S. C.
    Olding, Benjamin P.
    Lysy, Martin
    Liu, Jun S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1558 - 1574
  • [9] Parameter estimation and bias correction for diffusion processes
    Tang, Cheng Yong
    Chen, Song Xi
    JOURNAL OF ECONOMETRICS, 2009, 149 (01) : 65 - 81
  • [10] On parameter estimation for switching ergodic diffusion processes
    Kutoyants, YA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 925 - 930