An experimental study on stability and generalization of extreme learning machines

被引:30
|
作者
Fu, Aimin [1 ]
Dong, Chunru [2 ]
Wang, Laisheng [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Extreme learning machine; Generalization capability; Uncertainty; Fuzziness; ADAPTIVE FUNCTION APPROXIMATION; STOCHASTIC CHOICE; NETWORKS;
D O I
10.1007/s13042-014-0238-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper gives an experimental study on the stability of an extreme learning machine (ELM) and its generalization capability. Focusing on the relationship between uncertainty of an ELM's output on the training set and the ELM's generalization capability, the experiments show some new results in the viewpoint of classical pattern recognition. The study provides some useful guidelines to choose a fraction of ELMs with better generalization from an ensemble for classification problems.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [1] An experimental study on stability and generalization of extreme learning machines
    Aimin Fu
    Chunru Dong
    Laisheng Wang
    International Journal of Machine Learning and Cybernetics, 2015, 6 : 129 - 135
  • [2] Extreme Learning Machines
    Cambria, Erik
    Huang, Guang-Bin
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (06) : 30 - 31
  • [3] Extreme learning machines
    MIT Media Laboratory, Singapore
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    IEEE Intell. Syst., 2013, 6 (30-59):
  • [4] Dynamical system learning using extreme learning machines with safety and stability guarantees
    Salehi, Iman
    Rotithor, Ghananeel
    Yao, Gang
    Dani, Ashwin P.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (06) : 894 - 914
  • [5] An experimental evaluation of extreme learning machines on several hardware devices
    Li, Liang
    Wang, Guoren
    Wu, Gang
    Zhang, Qi
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 14385 - 14397
  • [6] An experimental evaluation of extreme learning machines on several hardware devices
    Liang Li
    Guoren Wang
    Gang Wu
    Qi Zhang
    Neural Computing and Applications, 2020, 32 : 14385 - 14397
  • [7] Extreme ensemble of extreme learning machines
    Mansoori, Eghbal G.
    Sara, Massar
    STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (02) : 116 - 128
  • [8] A Preliminary Study of Diversity in Extreme Learning Machines Ensembles
    Perales-Gonzalez, Carlos
    Carbonero-Ruz, Mariano
    Becerra-Alonso, David
    Fernandez-Navarro, Francisco
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 302 - 314
  • [9] Fusion of extreme learning machines
    Zhang, Wen-Bo
    Ji, Hong-Bing
    Zhang, W.-B. (zwbsoul@163.com), 1600, Science Press (35): : 2728 - 2732
  • [10] Applications of Extreme Learning Machines
    Chen, Jim X.
    COMPUTING IN SCIENCE & ENGINEERING, 2019, 21 (05) : 4 - 5