A Preliminary Study of Diversity in Extreme Learning Machines Ensembles

被引:0
|
作者
Perales-Gonzalez, Carlos [1 ]
Carbonero-Ruz, Mariano [1 ]
Becerra-Alonso, David [1 ]
Fernandez-Navarro, Francisco [1 ]
机构
[1] Univ Loyola Andalucia, Dept Quantitat Methods, Seville, Spain
关键词
Extreme learning machine; Diversity; Machine learning; Ensemble; AdaBoost; REGRESSION;
D O I
10.1007/978-3-319-92639-1_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the neural network version of Extreme Learning Machine (ELM) is used as a base learner for an ensemble meta algorithm which promotes diversity explicitly in the ELM loss function. The cost function proposed encourages orthogonality (scalar product) in the parameter space. Other ensemble-based meta-algorithms from AdaBoost family are used for comparison purposes. Both accuracy and diversity presented in our proposal are competitive, thus reinforcing the idea of introducing diversity explicitly.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [1] Ensembles of learning machines
    Valentini, G
    Masulli, R
    NEURAL NETS, 2002, 2486 : 3 - 19
  • [2] Spatially regularized semisupervised Ensembles of Extreme Learning Machines for hyperspectral image segmentation
    Ayerdi, Borja
    Marques, Ion
    Grana, Manuel
    NEUROCOMPUTING, 2015, 149 : 373 - 386
  • [3] Ensembles of Evolutionary Extreme Learning Machines Through Differential Evolution and Fitness Sharing
    de Lima, Tiago. P. F.
    Ludermir, Teresa. B.
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2677 - 2682
  • [4] EXPLOITING DIVERSITY OF NEURAL NETWORK ENSEMBLES BASED ON EXTREME LEARNING MACHINE
    Garcia-Laencina, Pedro J.
    Roca-Gonzalez, Jose-Luis
    Bueno-Crespo, Andres
    Sancho-Gomez, Jose-Luis
    NEURAL NETWORK WORLD, 2013, 23 (05) : 395 - 409
  • [5] Extreme Learning Machines
    Cambria, Erik
    Huang, Guang-Bin
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (06) : 30 - 31
  • [6] Extreme learning machines
    MIT Media Laboratory, Singapore
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    IEEE Intell. Syst., 2013, 6 (30-59):
  • [7] Extreme ensemble of extreme learning machines
    Mansoori, Eghbal G.
    Sara, Massar
    STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (02) : 116 - 128
  • [8] An experimental study on stability and generalization of extreme learning machines
    Fu, Aimin
    Dong, Chunru
    Wang, Laisheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (01) : 129 - 135
  • [9] An experimental study on stability and generalization of extreme learning machines
    Aimin Fu
    Chunru Dong
    Laisheng Wang
    International Journal of Machine Learning and Cybernetics, 2015, 6 : 129 - 135
  • [10] Multi-objective ensembles of echo state networks and extreme learning machines for streamflow series forecasting
    Alves Ribeiro, Victor Henrique
    Reynoso-Meza, Gilberto
    Siqueira, Hugo Valadares
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 95