A Preliminary Study of Diversity in Extreme Learning Machines Ensembles

被引:0
|
作者
Perales-Gonzalez, Carlos [1 ]
Carbonero-Ruz, Mariano [1 ]
Becerra-Alonso, David [1 ]
Fernandez-Navarro, Francisco [1 ]
机构
[1] Univ Loyola Andalucia, Dept Quantitat Methods, Seville, Spain
关键词
Extreme learning machine; Diversity; Machine learning; Ensemble; AdaBoost; REGRESSION;
D O I
10.1007/978-3-319-92639-1_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the neural network version of Extreme Learning Machine (ELM) is used as a base learner for an ensemble meta algorithm which promotes diversity explicitly in the ELM loss function. The cost function proposed encourages orthogonality (scalar product) in the parameter space. Other ensemble-based meta-algorithms from AdaBoost family are used for comparison purposes. Both accuracy and diversity presented in our proposal are competitive, thus reinforcing the idea of introducing diversity explicitly.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [31] Diversity Matters When Learning From Ensembles
    Nam, Giung
    Yoon, Jongmin
    Lee, Yoonho
    Lee, Juho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [32] Learning deep representations via extreme learning machines
    Yu, Wenchao
    Zhuang, Fuzhen
    He, Qing
    Shi, Zhongzhi
    NEUROCOMPUTING, 2015, 149 : 308 - 315
  • [33] ELMNET: FEATURE LEARNING USING EXTREME LEARNING MACHINES
    Cui, Dongshun
    Huang, Guang-Bin
    Kasun, L. L. Chamara
    Zhang, Guanghao
    Han, Wei
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1857 - 1861
  • [34] A comparative analysis of support vector machines and extreme learning machines
    Liu, Xueyi
    Gao, Chuanhou
    Li, Ping
    NEURAL NETWORKS, 2012, 33 : 58 - 66
  • [35] Data Partition Learning With Multiple Extreme Learning Machines
    Yang, Yimin
    Wu, Q. M. J.
    Wang, Yaonan
    Zeeshan, K. M.
    Lin, Xiaofeng
    Yuan, Xiaofang
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (08) : 1463 - 1475
  • [36] Correction to: Deep kernel learning in extreme learning machines
    A. L. Afzal
    Nikhitha K. Nair
    S. Asharaf
    Pattern Analysis and Applications, 2021, 24 (1) : 21 - 21
  • [37] A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
    Ebtehaj, I.
    Bonakdari, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2016, 29 (11): : 1499 - 1506
  • [38] Optical Extreme Learning Machines with Atomic Vapors
    Silva, Nuno A.
    Rocha, Vicente
    Ferreira, Tiago D.
    ATOMS, 2024, 12 (02)
  • [39] Feature Selection Methods for Extreme Learning Machines
    Fu, Yanlin
    Wu, Qing
    Liu, Ke
    Gao, Haotian
    AXIOMS, 2022, 11 (09)
  • [40] Knowledge-based extreme learning machines
    Balasundaram, S.
    Gupta, Deepak
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (06): : 1629 - 1641