A Preliminary Study of Diversity in Extreme Learning Machines Ensembles

被引:0
|
作者
Perales-Gonzalez, Carlos [1 ]
Carbonero-Ruz, Mariano [1 ]
Becerra-Alonso, David [1 ]
Fernandez-Navarro, Francisco [1 ]
机构
[1] Univ Loyola Andalucia, Dept Quantitat Methods, Seville, Spain
关键词
Extreme learning machine; Diversity; Machine learning; Ensemble; AdaBoost; REGRESSION;
D O I
10.1007/978-3-319-92639-1_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the neural network version of Extreme Learning Machine (ELM) is used as a base learner for an ensemble meta algorithm which promotes diversity explicitly in the ELM loss function. The cost function proposed encourages orthogonality (scalar product) in the parameter space. Other ensemble-based meta-algorithms from AdaBoost family are used for comparison purposes. Both accuracy and diversity presented in our proposal are competitive, thus reinforcing the idea of introducing diversity explicitly.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [21] Extreme learning machines with expectation kernels
    Zhang, Wenyu
    Zhang, Zhenjiang
    Wang, Lifu
    Chao, Han-Chieh
    Zhou, Zhangbing
    PATTERN RECOGNITION, 2019, 96
  • [22] Extreme Learning Machines for Intrusion Detection
    Cheng, Chi
    Tay, Wee Peng
    Huang, Guang-Bin
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [23] Binary/ternary extreme learning machines
    van Heeswijk, Mark
    Miche, Yoan
    NEUROCOMPUTING, 2015, 149 : 187 - 197
  • [24] Online Extreme Evolutionary Learning Machines
    Auerbach, Joshua E.
    Fernando, Chrisantha
    Floreano, Dario
    ALIFE 2014: THE FOURTEENTH INTERNATIONAL CONFERENCE ON THE SYNTHESIS AND SIMULATION OF LIVING SYSTEMS, 2014, : 465 - 472
  • [25] Gauss–Seidel Extreme Learning Machines
    de Freitas R.C.
    Ferreira J.
    de Lima S.M.L.
    Fernandes B.J.T.
    Bezerra B.L.D.
    dos Santos W.P.
    SN Computer Science, 2020, 1 (4)
  • [26] Adaptive multilayer extreme learning machines
    Filelis-Papadopoulos, Christos K.
    Morrison, John P.
    O'Reilly, Philip
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 231 : 71 - 98
  • [27] In-Materio Extreme Learning Machines
    Jones, Benedict A. H.
    Al Moubayed, Noura
    Zeze, Dagou A.
    Groves, Chris
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 505 - 519
  • [28] Trends in extreme learning machines: A review
    Huang, Gao
    Huang, Guang-Bin
    Song, Shiji
    You, Keyou
    NEURAL NETWORKS, 2015, 61 : 32 - 48
  • [29] Evolving hybrid ensembles of learning machines for better generalisation
    Chandra, A
    Yao, X
    NEUROCOMPUTING, 2006, 69 (7-9) : 686 - 700
  • [30] Evolutionary extreme learning machine ensembles with size control
    Wang, Dianhui
    Alhamdoosh, Monther
    NEUROCOMPUTING, 2013, 102 : 98 - 110