An experimental study on stability and generalization of extreme learning machines

被引:30
|
作者
Fu, Aimin [1 ]
Dong, Chunru [2 ]
Wang, Laisheng [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Extreme learning machine; Generalization capability; Uncertainty; Fuzziness; ADAPTIVE FUNCTION APPROXIMATION; STOCHASTIC CHOICE; NETWORKS;
D O I
10.1007/s13042-014-0238-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper gives an experimental study on the stability of an extreme learning machine (ELM) and its generalization capability. Focusing on the relationship between uncertainty of an ELM's output on the training set and the ELM's generalization capability, the experiments show some new results in the viewpoint of classical pattern recognition. The study provides some useful guidelines to choose a fraction of ELMs with better generalization from an ensemble for classification problems.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [21] Ensemble of Extreme Learning Machines for Regression
    Khellal, Atmane
    Ma, Hongbin
    Fei, Qing
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 1052 - 1057
  • [22] Extreme learning machines with expectation kernels
    Zhang, Wenyu
    Zhang, Zhenjiang
    Wang, Lifu
    Chao, Han-Chieh
    Zhou, Zhangbing
    PATTERN RECOGNITION, 2019, 96
  • [23] Extreme Learning Machines for Intrusion Detection
    Cheng, Chi
    Tay, Wee Peng
    Huang, Guang-Bin
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [24] Binary/ternary extreme learning machines
    van Heeswijk, Mark
    Miche, Yoan
    NEUROCOMPUTING, 2015, 149 : 187 - 197
  • [25] Online Extreme Evolutionary Learning Machines
    Auerbach, Joshua E.
    Fernando, Chrisantha
    Floreano, Dario
    ALIFE 2014: THE FOURTEENTH INTERNATIONAL CONFERENCE ON THE SYNTHESIS AND SIMULATION OF LIVING SYSTEMS, 2014, : 465 - 472
  • [26] Gauss–Seidel Extreme Learning Machines
    de Freitas R.C.
    Ferreira J.
    de Lima S.M.L.
    Fernandes B.J.T.
    Bezerra B.L.D.
    dos Santos W.P.
    SN Computer Science, 2020, 1 (4)
  • [27] Adaptive multilayer extreme learning machines
    Filelis-Papadopoulos, Christos K.
    Morrison, John P.
    O'Reilly, Philip
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 231 : 71 - 98
  • [28] In-Materio Extreme Learning Machines
    Jones, Benedict A. H.
    Al Moubayed, Noura
    Zeze, Dagou A.
    Groves, Chris
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 505 - 519
  • [29] Trends in extreme learning machines: A review
    Huang, Gao
    Huang, Guang-Bin
    Song, Shiji
    You, Keyou
    NEURAL NETWORKS, 2015, 61 : 32 - 48
  • [30] On the Stability and Generalization of Triplet Learning
    Chen, Jun
    Chen, Hong
    Jiang, Xue
    Gu, Bin
    Li, Weifu
    Gong, Tieliang
    Zheng, Feng
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7033 - 7041