An experimental study on stability and generalization of extreme learning machines

被引:30
|
作者
Fu, Aimin [1 ]
Dong, Chunru [2 ]
Wang, Laisheng [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Extreme learning machine; Generalization capability; Uncertainty; Fuzziness; ADAPTIVE FUNCTION APPROXIMATION; STOCHASTIC CHOICE; NETWORKS;
D O I
10.1007/s13042-014-0238-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper gives an experimental study on the stability of an extreme learning machine (ELM) and its generalization capability. Focusing on the relationship between uncertainty of an ELM's output on the training set and the ELM's generalization capability, the experiments show some new results in the viewpoint of classical pattern recognition. The study provides some useful guidelines to choose a fraction of ELMs with better generalization from an ensemble for classification problems.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [41] Feature Selection Methods for Extreme Learning Machines
    Fu, Yanlin
    Wu, Qing
    Liu, Ke
    Gao, Haotian
    AXIOMS, 2022, 11 (09)
  • [42] Knowledge-based extreme learning machines
    Balasundaram, S.
    Gupta, Deepak
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (06): : 1629 - 1641
  • [43] Extreme Learning Machines for spatial environmental data
    Leuenberger, Michael
    Kanevski, Mikhail
    COMPUTERS & GEOSCIENCES, 2015, 85 : 64 - 73
  • [44] Extreme learning machines: new trends and applications
    DENG ChenWei
    HUANG GuangBin
    XU Jia
    TANG JieXiong
    Science China(Information Sciences), 2015, 58 (02) : 5 - 20
  • [45] Potential and limitations of quantum extreme learning machines
    Innocenti, L.
    Lorenzo, S.
    Palmisano, I.
    Ferraro, A.
    Paternostro, M.
    Palma, G. M.
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [46] Convolutional Extreme Learning Machines: A Systematic Review
    Rodrigues, Iago Richard
    da Silva Neto, Sebastiao Rogerio
    Kelner, Judith
    Sadok, Djamel
    Endo, Patricia Takako
    INFORMATICS-BASEL, 2021, 8 (02):
  • [47] Batch Intrinsic Plasticity for Extreme Learning Machines
    Neumann, Klaus
    Steil, Jochen J.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 339 - 346
  • [48] Neuromemristive Extreme Learning Machines for Pattern Classification
    Merkel, Cory
    Kudithipudi, Dhireesha
    2014 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2014, : 77 - 82
  • [49] Object tracking with collaborative extreme learning machines
    Haipeng Kuang
    Liang Xun
    Multimedia Tools and Applications, 2020, 79 : 4965 - 4988
  • [50] Learning to Stabilize Extreme Neural Machines with Metaplasticity
    Boucher-Routhier, Megan
    Pilzak, Artem
    Charbonneau, Annie Theberge
    Thivierge, Jean-Philippe
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,