A novel meshless method for fully nonlinear advection-diffusion-reaction problems to model transfer in anisotropic media

被引:98
|
作者
Lin, Ji [1 ]
Reutskiy, S. Y. [1 ,2 ]
Lu, Jun [3 ,4 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Int Ctr Simulat Software Engn & Sci, Nanjing 211100, Jiangsu, Peoples R China
[2] Natl Acad Sci Ukraine, State Inst, Inst Tech Problems Magnetism, Ind Naya St 19, UA-61106 Kharkov, Ukraine
[3] Nanjing Hydraul Res Inst, Hujuguan 34 Rd, Nanjing 210024, Jiangsu, Peoples R China
[4] State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Advection-diffusion-reaction equation; Anisotropic nonlinear media; Irregular domain; Meshless method; Radial basis functions; HEAT-CONDUCTION PROBLEMS; COLLOCATION METHOD; EQUATIONS; SIMULATION; SINGLE;
D O I
10.1016/j.amc.2018.07.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents the new version of the backward substitution method (BSM) for simulating transfer in anisotropic and inhomogeneous media governed by linear and fully nonlinear advection-diffusion-reaction equations (ADREs). The key idea of the method is to formulate a general analytical expression of the solution in the form of the series over a basis system which satisfies the boundary conditions with any choice of the free parameters. The radial basis functions (RBFs) of the different types are used to generate the basis system for expressing the solution. Then the expression is substituted into the ADRE under consideration and the free parameters are determined by the collocation inside the solution domain. As a result we separate the approximation of the boundary conditions and the approximation of the PDE inside the solution domain. This approach leads to an important improvement of the accuracy of the approximate solution and can be easily extended onto irregular domain problems. Furthermore, the proposed method is extended to general fully nonlinear ADREs in combination with the quasilinearization technique. Some numerical results and comparisons are provided to justify the advantages of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:459 / 476
页数:18
相关论文
共 50 条
  • [41] ADER Schemes for Nonlinear Systems of Stiff Advection-Diffusion-Reaction Equations
    Hidalgo, Arturo
    Dumbser, Michael
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 48 (1-3) : 173 - 189
  • [42] Generalized nonstandard numerical methods for nonlinear advection-diffusion-reaction equations
    Kojouharov, HV
    Welfert, BD
    LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 465 - 472
  • [43] NSFD schemes for a class of nonlinear generalised advection-diffusion-reaction equation
    Kayenat, Sheerin
    Verma, Amit K.
    PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (01):
  • [44] HiMod Reduction of Advection-Diffusion-Reaction Problems with General Boundary Conditions
    Aletti, Matteo C.
    Perotto, Simona
    Veneziani, Alessandro
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 89 - 119
  • [45] VERIFICATION OF THE HIGH ACCURACY SCHEME TO SOLVE ADVECTION-DIFFUSION-REACTION PROBLEMS
    Dyyak, I. I.
    Savula, Ya. G.
    Turchyn, Yu. I.
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2021, 3 (137): : 66 - 75
  • [46] HIERARCHICAL MODEL REDUCTION DRIVEN BY A PROPER ORTHOGONAL DECOMPOSITION FOR PARAMETRIZED ADVECTION-DIFFUSION-REACTION PROBLEMS
    PASINI, M. A. S. S. I. M. I. L. I. A. N. O. L. U. P. O.
    PEROTTO, S. I. M. O. N. A.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 : 187 - 212
  • [47] Stochastic estimation of Green's functions with application to diffusion and advection-diffusion-reaction problems
    Keanini, Russell G.
    Dahlberg, Jerry
    Brown, Philip
    Morovati, Mehdi
    Moradi, Hamidreza
    Jacobs, Donald
    Tkacik, Peter T.
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 457
  • [48] Pore network modeling of advection-diffusion-reaction in porous media: The effects of channels
    Huang, Xiang
    Zhou, Wei
    Liu, Bin
    Jiang, Kaiyong
    CHEMICAL ENGINEERING SCIENCE, 2023, 271
  • [49] Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems
    Speleers, Hendrik
    Manni, Carla
    Pelosi, Francesca
    Sampoli, M. Lucia
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 221 : 132 - 148
  • [50] Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media
    Verma, Nitesh
    Gomez-Vargas, Bryan
    De Oliveira Vilaca, Luis Miguel
    Kumar, Sarvesh
    Ruiz-Baier, Ricardo
    APPLICABLE ANALYSIS, 2022, 101 (14) : 4914 - 4941