Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media

被引:8
|
作者
Verma, Nitesh [1 ,8 ]
Gomez-Vargas, Bryan [2 ,3 ,4 ]
De Oliveira Vilaca, Luis Miguel [5 ]
Kumar, Sarvesh [1 ]
Ruiz-Baier, Ricardo [6 ,7 ]
机构
[1] Indian Inst Space Sci & Technol, Trivandrum, Kerala, India
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[4] Univ Costa Rica, Secc Matemat, San Ramon, Alajuela, Costa Rica
[5] Univ Geneva, Dept Genet & Evolut, Lab Artificial & Nat Evolut LANE, Geneva, Switzerland
[6] Univ Oxford, Math Inst, Oxford, England
[7] Univ Adventista Chile, Chillan, Chile
[8] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
关键词
Biot equations; reaction-diffusion; mixed finite element scheme; well-posedness and stability; numerical experiments and error estimates;
D O I
10.1080/00036811.2021.1877677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse a PDE system modelling poromechanical processes (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and reacting solutes in the medium. We investigate the well-posedness of the nonlinear set of equations using fixed-point theory, Fredholm's alternative, a priori estimates, and compactness arguments. We also propose a mixed finite element method and demonstrate the stability of the scheme. Error estimates are derived in suitable norms, and numerical experiments are conducted to illustrate the mechano-chemical coupling and to verify the theoretical rates of convergence.
引用
收藏
页码:4914 / 4941
页数:28
相关论文
共 50 条
  • [1] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944
  • [2] WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 918 - 944
  • [3] Exploring well-posedness and asymptotic behavior in an Advection-Diffusion-Reaction (ADR) model
    Elghandouri, Mohammed
    Ezzinbi, Khalil
    Saidi, Lamiae
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462
  • [4] Virtual Element Approximations for Two Species Model of the Advection-Diffusion-Reaction in Poroelastic Media
    Verma, Nitesh
    Kumar, Sarvesh
    MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (04) : 668 - 690
  • [5] An advection-diffusion equation with a generalized advection term: Well-posedness analysis and examples
    Malysheva, Tetyana
    White, Luther W.
    EXAMPLES AND COUNTEREXAMPLES, 2024, 6
  • [6] Well-posedness for a system of diffusion-reaction equations with noncoercive diffusion
    Zawallich, Jan
    Ippisch, Olaf
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) : 6539 - 6550
  • [7] On the global well-posedness of discrete Boltzmann systems with chemical reaction
    Oliveira, F
    Soares, AJ
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (12) : 1491 - 1506
  • [8] On the well-posedness of incompressible flow in porous media with supercritical diffusion
    Xue, Liutang
    APPLICABLE ANALYSIS, 2009, 88 (04) : 547 - 561
  • [9] A WELL-POSEDNESS FOR THE REACTION DIFFUSION EQUATIONS OF BELOUSOV-ZHABOTINSKY REACTION
    Kondo, S.
    Novrianti
    Sawada, O.
    Tsuge, N.
    OSAKA JOURNAL OF MATHEMATICS, 2021, 58 (01) : 59 - 70
  • [10] Convergence analysis on computation of coupled advection-diffusion-reaction problems
    Dong, W. B.
    Tang, H. S.
    Liu, Y. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 420