Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media

被引:8
|
作者
Verma, Nitesh [1 ,8 ]
Gomez-Vargas, Bryan [2 ,3 ,4 ]
De Oliveira Vilaca, Luis Miguel [5 ]
Kumar, Sarvesh [1 ]
Ruiz-Baier, Ricardo [6 ,7 ]
机构
[1] Indian Inst Space Sci & Technol, Trivandrum, Kerala, India
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[4] Univ Costa Rica, Secc Matemat, San Ramon, Alajuela, Costa Rica
[5] Univ Geneva, Dept Genet & Evolut, Lab Artificial & Nat Evolut LANE, Geneva, Switzerland
[6] Univ Oxford, Math Inst, Oxford, England
[7] Univ Adventista Chile, Chillan, Chile
[8] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
关键词
Biot equations; reaction-diffusion; mixed finite element scheme; well-posedness and stability; numerical experiments and error estimates;
D O I
10.1080/00036811.2021.1877677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse a PDE system modelling poromechanical processes (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and reacting solutes in the medium. We investigate the well-posedness of the nonlinear set of equations using fixed-point theory, Fredholm's alternative, a priori estimates, and compactness arguments. We also propose a mixed finite element method and demonstrate the stability of the scheme. Error estimates are derived in suitable norms, and numerical experiments are conducted to illustrate the mechano-chemical coupling and to verify the theoretical rates of convergence.
引用
收藏
页码:4914 / 4941
页数:28
相关论文
共 50 条
  • [21] Well-posedness and maximum principles for lattice reaction-diffusion equations
    Slavik, Antonin
    Stenlik, Petr
    Volek, Jonas
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 303 - 322
  • [22] DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS
    Ayuso, Blanca
    Marini, L. Donatella
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1391 - 1420
  • [23] Global well-posedness for incompressible flow in porous media with partial diffusion or fractional diffusion
    Guo, Yana
    Shang, Haifeng
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (06):
  • [24] Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics
    Friedlander, Susan
    Vicol, Vlad
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02): : 283 - 301
  • [25] Semidiscrete and discrete well-posedness of shock filtering
    Welk, M
    Weickert, J
    MATHEMATICAL MORPHOLOGY: 40 YEARS ON, 2005, 30 : 311 - 320
  • [26] Well-posedness and fast-diffusion limit for a bulk–surface reaction–diffusion system
    Stephan Hausberg
    Matthias Röger
    Nonlinear Differential Equations and Applications NoDEA, 2018, 25
  • [27] A variational multiscale model for the advection-diffusion-reaction equation
    Houzeaux, Guillaume
    Eguzkitza, Beatriz
    Vazquez, Mariano
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2009, 25 (07): : 787 - 809
  • [28] Dependence of advection-diffusion-reaction on flow coherent structures
    Tang, Wenbo
    Luna, Christopher
    PHYSICS OF FLUIDS, 2013, 25 (10)
  • [29] Behaviour of advection-diffusion-reaction processes with forcing terms
    Sari, Murat
    Tahir, Shko Ali
    Bouhamidi, Abderrahman
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (02) : 233 - 252
  • [30] Regularity and wave study of an advection-diffusion-reaction equation
    Akgul, Ali
    Ahmed, Nauman
    Shahzad, Muhammad
    Baber, Muhammad Zafarullah
    Iqbal, Muhammad Sajid
    Chan, Choon Kit
    SCIENTIFIC REPORTS, 2024, 14 (01):