A novel meshless method for fully nonlinear advection-diffusion-reaction problems to model transfer in anisotropic media

被引:98
|
作者
Lin, Ji [1 ]
Reutskiy, S. Y. [1 ,2 ]
Lu, Jun [3 ,4 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Int Ctr Simulat Software Engn & Sci, Nanjing 211100, Jiangsu, Peoples R China
[2] Natl Acad Sci Ukraine, State Inst, Inst Tech Problems Magnetism, Ind Naya St 19, UA-61106 Kharkov, Ukraine
[3] Nanjing Hydraul Res Inst, Hujuguan 34 Rd, Nanjing 210024, Jiangsu, Peoples R China
[4] State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Advection-diffusion-reaction equation; Anisotropic nonlinear media; Irregular domain; Meshless method; Radial basis functions; HEAT-CONDUCTION PROBLEMS; COLLOCATION METHOD; EQUATIONS; SIMULATION; SINGLE;
D O I
10.1016/j.amc.2018.07.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents the new version of the backward substitution method (BSM) for simulating transfer in anisotropic and inhomogeneous media governed by linear and fully nonlinear advection-diffusion-reaction equations (ADREs). The key idea of the method is to formulate a general analytical expression of the solution in the form of the series over a basis system which satisfies the boundary conditions with any choice of the free parameters. The radial basis functions (RBFs) of the different types are used to generate the basis system for expressing the solution. Then the expression is substituted into the ADRE under consideration and the free parameters are determined by the collocation inside the solution domain. As a result we separate the approximation of the boundary conditions and the approximation of the PDE inside the solution domain. This approach leads to an important improvement of the accuracy of the approximate solution and can be easily extended onto irregular domain problems. Furthermore, the proposed method is extended to general fully nonlinear ADREs in combination with the quasilinearization technique. Some numerical results and comparisons are provided to justify the advantages of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:459 / 476
页数:18
相关论文
共 50 条
  • [21] An error analysis of a finite element method for a system of nonlinear advection-diffusion-reaction equations
    Liu, Biyue
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1947 - 1959
  • [22] An adaptive stabilized method for advection-diffusion-reaction equation
    Araya, Rodolfo
    Aguayo, Jorge
    Munoz, Santiago
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [23] RBFs Collocation Method for an Advection-Diffusion-Reaction Problem
    Alessia, Perticarini
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [24] Convergence analysis on computation of coupled advection-diffusion-reaction problems
    Dong, W. B.
    Tang, H. S.
    Liu, Y. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 420
  • [25] Singularly perturbative behaviour of nonlinear advection-diffusion-reaction processes
    Cosgun, Tahir
    Sari, Murat
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (01):
  • [26] Point source identification in nonlinear advection-diffusion-reaction systems
    Mamonov, A. V.
    Tsai, Y-H R.
    INVERSE PROBLEMS, 2013, 29 (03)
  • [27] Discretization and Parallel Iterative Schemes for Advection-Diffusion-Reaction Problems
    Sivas, Abdullah Ali
    Manguoglu, Murat
    Boonkkamp, J. H. M. ten Thije
    Anthonissen, M. J. H.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 275 - 283
  • [28] OPTIMAL CONTROL OF SINGULARLY PERTURBED ADVECTION-DIFFUSION-REACTION PROBLEMS
    Lube, Gert
    Tews, Benjamin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (03): : 375 - 395
  • [29] RKC time-stepping for advection-diffusion-reaction problems
    Verwer, JG
    Sommeijer, BP
    Hundsdorfer, W
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) : 61 - 79
  • [30] Robust a-posteriori estimator for advection-diffusion-reaction problems
    Sangalli, Giancarlo
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 41 - 70