Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance

被引:7
|
作者
Jiang, Wei [1 ]
Tao, Chen [1 ]
Stolterfoht, Martin [1 ,2 ]
Jin, Hui [1 ]
Stephen, Meera [1 ]
Lin, Qianqian [1 ]
Nagiri, Ravi C. R. [3 ]
Burn, Paul L. [1 ]
Gentle, Ian R. [1 ]
机构
[1] Univ Queensland, Ctr Organ Photon & Elect, Sch Chem & Mol Biosci, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Queensland Node, Australian Natl Fabricat Facil, Brisbane, Qld 4072, Australia
关键词
Photoexcited hole transfer; Photocurrent generation; Synthesis; Hole mobility; Low donor content; Schottky junction; CARRIER MOBILITY; DERIVATIVES; GENERATION; EFFICIENT;
D O I
10.1016/j.orgel.2019.105480
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt%) films. It was found that the 6 wt% donor devices generally gave higher performance than devices containing 50 wt% of the donor.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Inorganic Hole-Transporting Materials for Perovskite Solar Cells
    Yu, Ze
    Sun, Licheng
    SMALL METHODS, 2018, 2 (02):
  • [12] Hole-Transporting Materials for Printable Perovskite Solar Cells
    Vivo, Paola
    Salunke, Jagadish K.
    Priimagi, Arri
    MATERIALS, 2017, 10 (09)
  • [13] Triselenasumanene-based organic molecules as donor and hole-transporting materials for next-generation solar cells
    Pavithrakumar, M.
    Senthilkumar, K.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 190
  • [14] Performance and Stability Enhancement of Hole-Transporting Materials in Inverted Perovskite Solar Cells
    Zhan, Liqing
    Zhang, Leyuan
    Li, Yirong
    Cai, Hong
    Wu, Yongzhen
    ACS APPLIED ENERGY MATERIALS, 2025,
  • [15] Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells
    Karimi, E.
    Ghorashi, S. M. B.
    OPTIK, 2017, 130 : 650 - 658
  • [16] Recent Advances in Hole-Transporting Layers for Organic Solar Cells
    Anrango-Camacho, Cinthya
    Pavon-Ipiales, Karla
    Frontana-Uribe, Bernardo A.
    Palma-Cando, Alex
    NANOMATERIALS, 2022, 12 (03)
  • [17] Hole-Transporting Materials for Perovskite-Sensitized Solar Cells
    Dhingra, Pankul
    Singh, Pallavi
    Rana, Prem Jyoti Singh
    Garg, Akshat
    Kar, Prasenjit
    ENERGY TECHNOLOGY, 2016, 4 (08) : 891 - 938
  • [18] Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells
    Yan, Weibo
    Ye, Senyun
    Li, Yunlong
    Sun, Weihai
    Rao, Haixia
    Liu, Zhiwei
    Bian, Zuqiang
    Huang, Chunhui
    ADVANCED ENERGY MATERIALS, 2016, 6 (17)
  • [19] Development of simple hole-transporting materials for perovskite solar cells
    Namespetra, Andrew M.
    Hendsbee, Arthur D.
    Welch, Gregory C.
    Hill, Ian G.
    CANADIAN JOURNAL OF CHEMISTRY, 2016, 94 (04) : 352 - 359
  • [20] π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells
    Gheno, Alexandre
    Vedraine, Sylvain
    Ratier, Bernard
    Boucle, Johann
    METALS, 2016, 6 (01)