Hole-Transporting Materials for Printable Perovskite Solar Cells

被引:92
|
作者
Vivo, Paola [1 ]
Salunke, Jagadish K. [1 ]
Priimagi, Arri [1 ]
机构
[1] Tampere Univ Technol, Lab Chem & Bioengn, POB 541, FI-33101 Tampere, Finland
基金
芬兰科学院;
关键词
perovskite solar cells; hole-transporting material; printable; small-molecule; polymer; inorganic; hybrid; HIGHLY EFFICIENT; HIGH-PERFORMANCE; LOW-COST; LOW-TEMPERATURE; SEQUENTIAL DEPOSITION; INTERFACIAL LAYER; CARBON NANOTUBES; FACILE SYNTHESIS; SPIRO-OMETAD; THIN-FILM;
D O I
10.3390/ma10091087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2',7,7'-tetrakis-(N,N'-di-p-methoxyphenylamine)9,9'-spirobifluorene), better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] Hole-Transporting Materials for Perovskite Solar Cells
    Liu, Fan
    Li, Qianqian
    Li, Zhen
    [J]. ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2018, 7 (11) : 2182 - 2200
  • [2] Progress in hole-transporting materials for perovskite solar cells
    Yang, Xichuan
    Wang, Haoxin
    Cai, Bin
    Yu, Ze
    Sun, Licheng
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (03) : 650 - 672
  • [3] Progress in hole-transporting materials for perovskite solar cells
    Xichuan Yang
    Haoxin Wang
    Bin Cai
    Ze Yu
    Licheng Sun
    [J]. Journal of Energy Chemistry., 2018, 27 (03) - 672
  • [4] Progress in hole-transporting materials for perovskite solar cells
    Xichuan Yang
    Haoxin Wang
    Bin Cai
    Ze Yu
    Licheng Sun
    [J]. Journal of Energy Chemistry, 2018, (03) : 650 - 672
  • [5] Inorganic Hole-Transporting Materials for Perovskite Solar Cells
    Yu, Ze
    Sun, Licheng
    [J]. SMALL METHODS, 2018, 2 (02):
  • [6] Hole-Transporting Materials for Perovskite-Sensitized Solar Cells
    Dhingra, Pankul
    Singh, Pallavi
    Rana, Prem Jyoti Singh
    Garg, Akshat
    Kar, Prasenjit
    [J]. ENERGY TECHNOLOGY, 2016, 4 (08) : 891 - 938
  • [7] Organic hole-transporting materials for efficient perovskite solar cells
    Zhao, Xiaojuan
    Wang, Mingkui
    [J]. MATERIALS TODAY ENERGY, 2018, 7 : 208 - 220
  • [8] π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells
    Gheno, Alexandre
    Vedraine, Sylvain
    Ratier, Bernard
    Boucle, Johann
    [J]. METALS, 2016, 6 (01)
  • [9] Application of Organic Hole-Transporting Materials in Perovskite Solar Cells
    Liu Xue-Peng
    Kong Fan-Tai
    Chen Wang-Chao
    Yu Ting
    Guo Fu-Ling
    Chen Jian
    Dai Song-Yuan
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (06) : 1347 - 1370
  • [10] Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells
    Yan, Weibo
    Ye, Senyun
    Li, Yunlong
    Sun, Weihai
    Rao, Haixia
    Liu, Zhiwei
    Bian, Zuqiang
    Huang, Chunhui
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (17)