Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance

被引:7
|
作者
Jiang, Wei [1 ]
Tao, Chen [1 ]
Stolterfoht, Martin [1 ,2 ]
Jin, Hui [1 ]
Stephen, Meera [1 ]
Lin, Qianqian [1 ]
Nagiri, Ravi C. R. [3 ]
Burn, Paul L. [1 ]
Gentle, Ian R. [1 ]
机构
[1] Univ Queensland, Ctr Organ Photon & Elect, Sch Chem & Mol Biosci, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Queensland Node, Australian Natl Fabricat Facil, Brisbane, Qld 4072, Australia
关键词
Photoexcited hole transfer; Photocurrent generation; Synthesis; Hole mobility; Low donor content; Schottky junction; CARRIER MOBILITY; DERIVATIVES; GENERATION; EFFICIENT;
D O I
10.1016/j.orgel.2019.105480
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt%) films. It was found that the 6 wt% donor devices generally gave higher performance than devices containing 50 wt% of the donor.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Truxene-based Hole-transporting Materials for Perovskite Solar Cells
    林琳琳
    涂用广
    汤昌泉
    马云龙
    陈善慈
    尹志刚
    魏佳骏
    郑庆东
    结构化学, 2016, 35 (10) : 1517 - 1524
  • [42] Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core
    Santos, Jose
    Calbo, Joaquin
    Sandoval-Torrientes, Rafael
    Garcia-Benito, Ines
    Kanda, Hiroyuki
    Zimmermann, Iwan
    Arago, Juan
    Nazeeruddin, Mohammad Khaja
    Orti, Enrique
    Martin, Nazario
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28214 - 28221
  • [43] Tetraphenylmethane-Arylamine Hole-Transporting Materials for Perovskite Solar Cells
    Liu, Xuepeng
    Kong, Fantai
    Cheng, Tai
    Chen, Wangchao
    Tan, Zhan'ao
    Yu, Ting
    Guo, Fuling
    Chen, Jian
    Yao, Jianxi
    Dai, Songyuan
    CHEMSUSCHEM, 2017, 10 (05) : 968 - 975
  • [44] Branched Fluorenylidene Derivatives with Low Ionization Potentials as Hole-Transporting Materials for Perovskite Solar Cells
    Jegorove, Aiste
    Xia, Jianxing
    Steponaitis, Matas
    Daskeviciene, Maryte
    Jankauskas, Vygintas
    Gruodis, Alytis
    Kamarauskas, Egidijus
    Malinauskas, Tadas
    Rakstys, Kasparas
    Alamry, Khalid A.
    Getautis, Vytautas
    Nazeeruddin, Mohammad Khaja
    CHEMISTRY OF MATERIALS, 2023, 35 (15) : 5914 - 5923
  • [45] Novel π-extended porphyrin-based hole-transporting materials with triarylamine donor units for high performance perovskite solar cells
    Kang, Sung Ho
    Lu, Chunyuan
    Zhou, Haoran
    Choi, Seungjoo
    Kim, Jeongho
    Kim, Hwan Kyu
    DYES AND PIGMENTS, 2019, 163 : 734 - 739
  • [46] Effects of Molecular Configuration on Charge Diffusion Kinetics within Hole-Transporting Materials for Perovskites Solar Cells
    Chi, Wei-Jie
    Li, Quan-Song
    Li, Ze-Sheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (16): : 8584 - 8590
  • [47] Machine learning assisted designing of hole-transporting materials for high performance perovskite solar cells
    Saqib, Muhammad
    Shoukat, Uzma
    Soliman, Mohamed Mohamed
    Bashir, Shahida
    Tahir, Mudassir Hussain
    Thabet, Hamdy Khamees
    Kallel, Mohamed
    CHEMICAL PHYSICS, 2025, 589
  • [48] Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells
    Mane, Sandeep B.
    Sutanto, Albertus Adrian
    Cheng, Chih-Fu
    Xie, Meng-Yu
    Chen, Chieh-I
    Leonardus, Mario
    Yeh, Shih-Chieh
    Beyene, Belete Bedemo
    Diau, Eric Wei-Guang
    Chen, Chin-Ti
    Hung, Chen-Hsiung
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (37) : 31950 - 31958
  • [49] Benzimidazole Based Hole-Transporting Materials for High-performance Inverted Perovskite Solar Cells
    Tingare, Yogesh S.
    Su, Chaochin
    Lin, Ja-Hon
    Hsieh, Yi-Chun
    Lin, Hong-Jia
    Hsu, Ya-Chun
    Li, Meng-Che
    Chen, Guan-Lin
    Tseng, Kai-Wei
    Yang, Yi-Hsuan
    Wang, Leeyih
    Tsai, Hsinhan
    Nie, Wanyi
    Li, Wen-Ren
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (33)
  • [50] Development of new hole-transporting amorphous molecular materials for organic electroluminescent devices and their charge-transport properties
    Okumoto, K
    Shirota, Y
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 85 (2-3): : 135 - 139