For i = 1, 2. 3, 3.5, we define the class of R-i-factorizable paratopological groups G by the condition that every continuous real-valued function on G can be factorized through a continuous homomorphism p : G -> H onto a second countable paratopological group H satisfying the T-i-separation axiom. We show that the Sorgenfrey line is a Lindelof paratopological group that fails to be R-1-factorizable. However, every Lindelof totally omega-narrow regular (Hausdorff) paratopological group is R-3-factorizable (resp. R-2-factorizable). We also prove that a Lindelof totally omega-narrow, regular paratopological group is topologically isomorphic to a closed subgroup of a product of separable metrizable paratopological groups. (C) 2009 Elsevier B.V. All rights reserved.
机构:
Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou 363000, Peoples R ChinaZhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou 363000, Peoples R China
机构:
Univ Autonoma Mexico, Acad Matemat, Prolongac San Isidro 151,San Lorenzo Tezonco,Del, Mexico City 09790, DF, MexicoUniv Autonoma Mexico, Acad Matemat, Prolongac San Isidro 151,San Lorenzo Tezonco,Del, Mexico City 09790, DF, Mexico
Fernandez, Manuel
Tkachenko, Mikhail
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana, Dept Matemat, Mexico City 09340, DF, MexicoUniv Autonoma Mexico, Acad Matemat, Prolongac San Isidro 151,San Lorenzo Tezonco,Del, Mexico City 09790, DF, Mexico
Tkachenko, Mikhail
APPLIED GENERAL TOPOLOGY,
2014,
15
(02):
: 235
-
248