R-factorizable paratopological groups

被引:17
|
作者
Sanchis, Manuel [2 ]
Tkachenko, Mikhail [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Mexico City 09340, DF, Mexico
[2] Univ Jaume 1, Dept Matemat, Castellon de La Plana, Spain
关键词
R-factorizable; Totally omega-narrow; Lindelof; Realcompact; Network; omega-Cellular; z-Embedded; CONTINUITY; INVERSE; SPACES;
D O I
10.1016/j.topol.2009.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For i = 1, 2. 3, 3.5, we define the class of R-i-factorizable paratopological groups G by the condition that every continuous real-valued function on G can be factorized through a continuous homomorphism p : G -> H onto a second countable paratopological group H satisfying the T-i-separation axiom. We show that the Sorgenfrey line is a Lindelof paratopological group that fails to be R-1-factorizable. However, every Lindelof totally omega-narrow regular (Hausdorff) paratopological group is R-3-factorizable (resp. R-2-factorizable). We also prove that a Lindelof totally omega-narrow, regular paratopological group is topologically isomorphic to a closed subgroup of a product of separable metrizable paratopological groups. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:800 / 808
页数:9
相关论文
共 50 条
  • [21] Almost paratopological groups
    Reznichenko, Evgenii
    TOPOLOGY AND ITS APPLICATIONS, 2023, 338
  • [22] A note on paratopological groups
    Liu, Chuan
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (04): : 633 - 640
  • [23] Condensations of paratopological groups
    Sanchez, Ivan
    TOPOLOGY AND ITS APPLICATIONS, 2015, 180 : 124 - 131
  • [24] Remainders of Semitopological Groups or Paratopological Groups
    Lin, Fucai
    Liu, Chuan
    Xie, Li-Hong
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (04) : 561 - 571
  • [25] ON FACTORIZABLE GROUPS
    PREISER, U
    ARCHIV DER MATHEMATIK, 1982, 39 (02) : 97 - 100
  • [26] The extensions of paratopological groups
    Xie, Li-Hong
    Lin, Shou
    TOPOLOGY AND ITS APPLICATIONS, 2015, 180 : 91 - 99
  • [27] Factorizable groups
    V. N. Semenchuk
    O. A. Mokeeva
    Mathematical Notes, 2009, 85 : 251 - 259
  • [28] Partially paratopological groups
    Ozel, Cenap
    Piekosz, Artur
    Al Shumrani, Mohammed
    Wajch, Eliza
    TOPOLOGY AND ITS APPLICATIONS, 2017, 228 : 68 - 78
  • [29] On feebly compact paratopological groups
    Banakh, Taras
    Ravsky, Alex
    TOPOLOGY AND ITS APPLICATIONS, 2020, 284
  • [30] A note on semitopological groups and paratopological groups
    Peng, Liang-Xue
    TOPOLOGY AND ITS APPLICATIONS, 2015, 191 : 143 - 152