R-factorizable paratopological groups

被引:17
|
作者
Sanchis, Manuel [2 ]
Tkachenko, Mikhail [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Mexico City 09340, DF, Mexico
[2] Univ Jaume 1, Dept Matemat, Castellon de La Plana, Spain
关键词
R-factorizable; Totally omega-narrow; Lindelof; Realcompact; Network; omega-Cellular; z-Embedded; CONTINUITY; INVERSE; SPACES;
D O I
10.1016/j.topol.2009.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For i = 1, 2. 3, 3.5, we define the class of R-i-factorizable paratopological groups G by the condition that every continuous real-valued function on G can be factorized through a continuous homomorphism p : G -> H onto a second countable paratopological group H satisfying the T-i-separation axiom. We show that the Sorgenfrey line is a Lindelof paratopological group that fails to be R-1-factorizable. However, every Lindelof totally omega-narrow regular (Hausdorff) paratopological group is R-3-factorizable (resp. R-2-factorizable). We also prove that a Lindelof totally omega-narrow, regular paratopological group is topologically isomorphic to a closed subgroup of a product of separable metrizable paratopological groups. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:800 / 808
页数:9
相关论文
共 50 条
  • [31] FACTORIZABLE GROUPS
    ROWLEY, P
    ARCHIV DER MATHEMATIK, 1978, 31 (02) : 113 - 116
  • [32] C-compact and r-pseudocompact subsets of paratopological groups
    Sanchez, Ivan
    Tkachenko, Mikhail G.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 203 : 125 - 140
  • [33] A note on paratopological groups with an ωω-base
    Cai, Zhangyong
    Ye, Peiqi
    Lin, Shou
    Zhao, Bin
    TOPOLOGY AND ITS APPLICATIONS, 2020, 275
  • [34] On rectifiable spaces and paratopological groups
    Lin, Fucai
    Shen, Rongxin
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (04) : 597 - 610
  • [35] PSEUDOBOUNDED OR ω-PSEUDOBOUNDED PARATOPOLOGICAL GROUPS
    Lin, Fucai
    Lin, Shou
    FILOMAT, 2011, 25 (03) : 93 - 103
  • [36] Remainders of Semitopological Groups or Paratopological Groups
    Fucai Lin
    Chuan Liu
    Li-Hong Xie
    Ukrainian Mathematical Journal, 2014, 66 : 561 - 571
  • [37] On Weakly Factorizable Groups
    V. M. Levchuk
    Mathematical Notes, 2003, 73 : 529 - 535
  • [38] A QUASITOPOLOGICAL MODIFICATION OF PARATOPOLOGICAL GROUPS
    Sanchez, Ivan
    Tkachenko, Mikhail G.
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (04): : 1305 - 1321
  • [39] On weakly factorizable groups
    Levchuk, VM
    MATHEMATICAL NOTES, 2003, 73 (3-4) : 529 - 535
  • [40] SIMPLE FACTORIZABLE GROUPS
    MONAKHOV, VS
    DOKLADY AKADEMII NAUK BELARUSI, 1974, 18 (07): : 584 - 585