Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs

被引:86
|
作者
Molahosseini, Amir Sabbagh [1 ]
Navi, Keivan [2 ]
Dadkhah, Chitra [3 ]
Kavehei, Omid [4 ]
Timarchi, Somayeh [2 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran 1477893855, Iran
[2] Shahid Beheshti Univ, Dept Elect & Comp Engn, GC, Tehran 1983963113, Iran
[3] KN Toosi Univ Technol, Dept Elect Engn, Tehran 1969764499, Iran
[4] Univ Adelaide, Sch Elect & Elect Engn, Ctr High Performance Integrated Technol & Syst, Adelaide, SA 5005, Australia
关键词
Computer arithmetic; new Chinese remainder theorems (New CRTs); residue arithmetic; reverse converter; residue number system (RNS); TO-BINARY CONVERTER; HIGH-SPEED; NUMBER SYSTEM; RESIDUE; RNS; 2(N+1)-1;
D O I
10.1109/TCSI.2009.2026681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce two new 4-moduli sets {2(n)-1, 2(n), 2(n)+1, 2(2n+1)-1} and {2(n)-1, 2(n)+1, 2(2n), 2(2n)+1} for developing efficient large dynamic range (DR) residue number systems (RNS). These moduli sets consist of simple and well-formed moduli which can result in efficient implementation of the reverse converter as well as internal RNS arithmetic circuits. The moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n+1) - 1} has 5n-bit DR and it can result in a fast RNS arithmetic unit, while the 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1} is a conversion friendly moduli set which can lead to a high-speed and low-cost reverse converter design. Next, efficient reverse converters for the proposed moduli sets based on new Chinese remainder theorems (New CRTs) are presented. The converter for the moduli set {2(n) - 1,2(n), 2(n) + 1, 2(2n+1) - 1} is derived by New CRT-II with better performance compared to the reverse converter for the latest introduced 5n-bit DR moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n-1) - 1}. Also, New CRT-I is used to achieve a high-performance reverse converter for the moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1}. This converter has less conversion delay and lower hardware requirements than the reverse converter for a recently suggested 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n) - 2, 2(2n+1) - 3}
引用
收藏
页码:823 / 835
页数:13
相关论文
共 50 条
  • [41] AN EFFICIENT REVERSE CONVERTER FOR THE NEW FOUR-MODULI SET {22n, 2n+1-1, 2n/2+1, 2n/2-1}
    Noorimehr, Mohammadreza
    Hosseinzadeh, Mehdi
    Farshidi, Reza
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2011, 20 (07) : 1341 - 1355
  • [42] {2n+1, 2n+k, 2n-1} :: A new RNS moduli set extension
    Chaves, R
    Sousa, L
    PROCEEDINGS OF THE EUROMICRO SYSTEMS ON DIGITAL SYSTEM DESIGN, 2004, : 210 - 217
  • [43] Efficient RNS to binary converters for the new 4-moduli set {2n, 2n+1-1, 2n-1, 2n-1-1}
    Esmaeildoust, Mohammad
    Navi, Keivan
    Taheri, MohammadReza
    Molahosseini, Amir Sabbagh
    Khodambashi, Siavash
    IEICE ELECTRONICS EXPRESS, 2012, 9 (01): : 1 - 7
  • [44] On a new code, [2n-1, n, 2n-1]
    Basu, M.
    Rahaman, Md. M.
    Bagchi, S.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (02) : 402 - 405
  • [45] New Algorithm for Signed Integer Comparison in Four-Moduli Superset {2n, 2n-1, 2n+1, 2n+1-1}
    Tay, Thian Fatt
    Chang, Chip-Hong
    2014 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2014, : 519 - 522
  • [46] Efficient Reverse Converters for 4-Moduli Sets {22n-1 - 1,2n,2n + 1,2n - 1} and {22n-1,22n-1 - 1,2n + 1,2n - 1} Based on CRTs Algorithm
    Noorimehr, Mohammad Reza
    Hosseinzadeh, Mehdi
    Navi, Keivan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (10) : 3145 - 3163
  • [47] Efficient methods in converting to modulo 2n+1 and 2n-1
    Manochehri, Kooroush
    Pourmozafari, Saadat
    Sadeghian, Babak
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 178 - +
  • [48] SPREADS AND PACKINGS FOR A CLASS OF ((2N + 1) (2N-1 - 1) + 1, 2N-1, 1)-DESIGNS
    BAKER, RD
    EBERT, GL
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 45 - 54
  • [49] Efficient VLSI Implementation of 2n Scaling of Signed Integer in RNS {2n-1, 2n, 2n+1}
    Tay, Thian Fatt
    Chang, Chip-Hong
    Low, Jeremy Yung Shern
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2013, 21 (10) : 1936 - 1940
  • [50] Adder based residue to binary number converters for (2n-1, 2n, 2n+1)
    Wang, Y
    Song, XY
    Aboulhamid, M
    Shen, H
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) : 1772 - 1779