Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs

被引:86
|
作者
Molahosseini, Amir Sabbagh [1 ]
Navi, Keivan [2 ]
Dadkhah, Chitra [3 ]
Kavehei, Omid [4 ]
Timarchi, Somayeh [2 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran 1477893855, Iran
[2] Shahid Beheshti Univ, Dept Elect & Comp Engn, GC, Tehran 1983963113, Iran
[3] KN Toosi Univ Technol, Dept Elect Engn, Tehran 1969764499, Iran
[4] Univ Adelaide, Sch Elect & Elect Engn, Ctr High Performance Integrated Technol & Syst, Adelaide, SA 5005, Australia
关键词
Computer arithmetic; new Chinese remainder theorems (New CRTs); residue arithmetic; reverse converter; residue number system (RNS); TO-BINARY CONVERTER; HIGH-SPEED; NUMBER SYSTEM; RESIDUE; RNS; 2(N+1)-1;
D O I
10.1109/TCSI.2009.2026681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce two new 4-moduli sets {2(n)-1, 2(n), 2(n)+1, 2(2n+1)-1} and {2(n)-1, 2(n)+1, 2(2n), 2(2n)+1} for developing efficient large dynamic range (DR) residue number systems (RNS). These moduli sets consist of simple and well-formed moduli which can result in efficient implementation of the reverse converter as well as internal RNS arithmetic circuits. The moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n+1) - 1} has 5n-bit DR and it can result in a fast RNS arithmetic unit, while the 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1} is a conversion friendly moduli set which can lead to a high-speed and low-cost reverse converter design. Next, efficient reverse converters for the proposed moduli sets based on new Chinese remainder theorems (New CRTs) are presented. The converter for the moduli set {2(n) - 1,2(n), 2(n) + 1, 2(2n+1) - 1} is derived by New CRT-II with better performance compared to the reverse converter for the latest introduced 5n-bit DR moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n-1) - 1}. Also, New CRT-I is used to achieve a high-performance reverse converter for the moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1}. This converter has less conversion delay and lower hardware requirements than the reverse converter for a recently suggested 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n) - 2, 2(2n+1) - 3}
引用
收藏
页码:823 / 835
页数:13
相关论文
共 50 条
  • [21] A New RNS Scaler for {2n-1, 2n, 2n+1}
    Low, Jeremy Yung Shern
    Chang, Chip Hong
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1431 - 1434
  • [22] RNS-to-binary converters for two four-moduli sets {2n-1,2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n+1+1}
    Mohan, P. V. Ananda
    Premkumar, A. B.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) : 1245 - 1254
  • [23] Efficient reverse converter design for the new four-moduli set {22n, 2n+1, 2n/2+1, 2n/2-1}
    Siao, Siang-Min
    Sheu, Ming-Hwa
    Hwang, Yin-Tsung
    Wang, Shao-Yu
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2017, 40 (02) : 134 - 140
  • [24] High speed reverse converter for new five-moduli set {2n, 22n+1-1, 2n/2-1, 2n/2+1, 2n+1}
    Esmaeildoust, Mohammad
    Navi, Keivan
    Taheri, MohammadReza
    IEICE ELECTRONICS EXPRESS, 2010, 7 (03): : 118 - 125
  • [25] Area-Power Efficient Modulo 2n-1 and Modulo 2n+1 Multipliers for {2n-1, 2n, 2n+1} Based RNS
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2263 - 2274
  • [26] An Efficient 2n RNS Scaler for Moduli Set {2n-1, 2n, 2n+1}
    Ye, Yanlong
    Ma, Shang
    Hu, Jianhao
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 511 - 515
  • [27] Reverse Converters for a New Moduli Set {22n − 1, 2n, 22n + 1}
    P.V. Ananda Mohan
    Circuits, Systems & Signal Processing, 2007, 26 : 215 - 227
  • [28] High Speed Comparator for the Moduli {2n, 2n-1, 2n+1}
    Li, Lei
    Li, Guodong
    Zhao, Yingxu
    Yin, Pengsheng
    Zhou, Wanting
    IEICE ELECTRONICS EXPRESS, 2013, 10 (21):
  • [29] Design of Reverse Converters for the New RNS Moduli Set {2n+1, 2n-1, 2n, 2n-1+1} (n odd)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (12) : 3436 - 3449
  • [30] Design of Reverse Converters for General RNS Moduli Sets {2k, 2n-1, 2n+1, 2n+1-1} and {2k, 2n-1, 2n+1, 2n-1-1} (n even)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (06) : 1687 - 1700