High Speed Comparator for the Moduli {2n, 2n-1, 2n+1}

被引:1
|
作者
Li, Lei [1 ]
Li, Guodong [1 ]
Zhao, Yingxu [1 ]
Yin, Pengsheng [1 ]
Zhou, Wanting [1 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2013年 / 10卷 / 21期
基金
中国国家自然科学基金;
关键词
Residue number systems (RNS); comparator; NUMBER SYSTEM; RESIDUE;
D O I
10.1587/elex.10.20130628
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
{2(n), 2(n) - 1, 2(n) + 1} is one of the most commonly used moduli in residue number systems. In this express, we propose a novel comparator for the moduli {2(n), 2(n) - 1, 2(n) + 1}. Based on the proposed architecture, we can design high speed comparator for the moduli {2(n), 2(n) - 1, 2(n) + 1}, which is the fastest among all known comparators for the moduli {2(n), 2(n) - 1, 2(n) + 1}. The performance of the proposed comparator is evaluated and compared with the earlier fast comparators for the moduli {2(n), 2n - 1, 2n + 1}, based on a simple gate-count and gate-delay model. The proposed comparator can improve the state-of-art by 8% on the average in terms of area and 6% on the average in terms of performance delay.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fully parallel comparator for the moduli set {2n, 2n-1, 2n+1}
    Eivazi, Shiva Taghipour
    Hosseinzadeh, Mehdi
    Mirmotahari, Omid
    IEICE ELECTRONICS EXPRESS, 2011, 8 (12): : 897 - 901
  • [2] An Efficient 2n RNS Scaler for Moduli Set {2n-1, 2n, 2n+1}
    Ye, Yanlong
    Ma, Shang
    Hu, Jianhao
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 511 - 515
  • [3] Efficient reverse converters for four-moduli sets {2n-1, 2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n-1-1}
    Cao, B
    Srikanthan, T
    Chang, CH
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2005, 152 (05): : 687 - 696
  • [4] RNS-to-binary converters for two four-moduli sets {2n-1,2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n+1+1}
    Mohan, P. V. Ananda
    Premkumar, A. B.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) : 1245 - 1254
  • [5] An improved reverse converter for the moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Hosseinzadeh, Mehdi
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    IEICE ELECTRONICS EXPRESS, 2008, 5 (17) : 672 - 677
  • [6] Shifter circuits for {2n+1, 2n, 2n-1} RNS
    Bakalis, D.
    Vergos, H. T.
    ELECTRONICS LETTERS, 2009, 45 (01) : 27 - 28
  • [7] A New RNS Scaler for {2n-1, 2n, 2n+1}
    Low, Jeremy Yung Shern
    Chang, Chip Hong
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1431 - 1434
  • [8] Reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M.
    Srikanthan, T.
    Clarke, C.T.
    Proceedings - Symposium on Computer Arithmetic, 1999, : 168 - 175
  • [9] A reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M
    Srikanthan, T
    Clarke, CT
    14TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1999, : 168 - 175
  • [10] High-speed and low-cost reverse converters for the (2n-1,2n,2n+1) moduli set
    Premkumar, AB
    Bhardwaj, M
    Srikanthan, T
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (07): : 903 - 908