Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems

被引:357
|
作者
Wang, Gai-Ge [1 ,2 ,3 ]
Deb, Suash [4 ]
Coelho, Leandro dos Santos [5 ,6 ]
机构
[1] Ocean Univ China, Dept Comp Sci & Technol, Qingdao 266100, Peoples R China
[2] Northeast Normal Univ, Inst Algorithm & Big Data Anal, Changchun 130117, Jilin, Peoples R China
[3] Northeast Normal Univ, Sch Comp Sci & Informat Technol, Changchun 130117, Jilin, Peoples R China
[4] Cambridge Inst Technol, Ranchi 835103, Jharkhand, India
[5] Pontifical Catholic Univ Parana PUCPR, Ind & Syst Engn Grad Program PPGEPS, Curitiba, Parana, Brazil
[6] Fed Univ Parana UFPR, Polytech Ctr, Dept Elect Engn, Elect Engn Grad Program PPGEE, Curitiba, Parana, Brazil
基金
中国国家自然科学基金;
关键词
earthworm optimisation algorithm; EWA; evolutionary computation; benchmark functions; improved crossover operator; Cauchy mutation; CM; bio-inspired metaheuristic; global optimisation; swarm intelligence; evolutionary algorithms; KRILL HERD ALGORITHM; BIOGEOGRAPHY-BASED OPTIMIZATION; PARTICLE SWARM OPTIMIZATION; ARTIFICIAL BEE COLONY; MODEL;
D O I
10.1504/IJBIC.2015.10004283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Earthworms can aerate the soil with their burrowing action and enrich the soil with their waste nutrients. Inspired by the earthworm contribution in nature, a new kind of bio-inspired metaheuristic algorithm, called earthworm optimisation algorithm (EWA), is proposed in this paper. The EWA method is inspired by the two kinds of reproduction (Reproduction 1 and Reproduction 2) of the earthworms. Reproduction 1 generates only one offspring by itself. Reproduction 2 is to generate one or more than one offspring at one time, and this can successfully be done by nine improved crossover operators. In addition, Cauchy mutation (CM) is added to EWA method. Nine different EWA methods with one, two and three offsprings based on nine improved crossover operators are respectively proposed. The results show that EWA23 performs the best and it can find the better fitness on most benchmarks than others.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [11] Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature
    Moazenzadeh, Roozbeh
    Mohammadi, Babak
    GEODERMA, 2019, 353 : 152 - 171
  • [12] A Comment on Bio-inspired Optimisation via GPU Architecture: The Genetic Algorithm Workload
    Prata, Paula
    Fazendeiro, Paulo
    Sequeira, Pedro
    Padole, Chandrashekhar
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 670 - 678
  • [13] Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
    Dehghani, Mohammad
    Trojovsky, Pavel
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2023, 8
  • [14] Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems
    Jiang, Yuxin
    Wu, Qing
    Zhu, Shenke
    Zhang, Luke
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 188
  • [15] Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
    Givi, Hadi
    Dehghani, Mohammad
    Hubalovsky, Stepan
    IEEE ACCESS, 2023, 11 : 57203 - 57227
  • [16] Bobcat Optimization Algorithm: an effective bio-inspired metaheuristic algorithm for solving supply chain optimization problems
    Benmamoun, Zoubida
    Khlie, Khaoula
    Bektemyssova, Gulnara
    Dehghani, Mohammad
    Gherabi, Youness
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [17] Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers
    Changting Zhong
    Gang Li
    Zeng Meng
    Haijiang Li
    Ali Riza Yildiz
    Seyedali Mirjalili
    Neural Computing and Applications, 2025, 37 (5) : 3641 - 3683
  • [18] Phototropic algorithm for global optimisation problems
    Chandra S. S., Vinod
    Hareendran S., Anand
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5965 - 5977
  • [19] Phototropic algorithm for global optimisation problems
    Vinod Chandra S. S.
    Anand Hareendran S.
    Applied Intelligence, 2021, 51 : 5965 - 5977
  • [20] Biased Eavesdropping Particles: A Novel Bio-inspired Heterogeneous Particle Swarm Optimisation Algorithm
    Varna, Fevzi Tugrul
    Husbands, Phil
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,