Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems

被引:6
|
作者
Givi, Hadi [1 ]
Dehghani, Mohammad [2 ]
Hubalovsky, Stepan [3 ]
机构
[1] Univ Isfahan, Dept Elect Engn, Shahreza Campus, Esfahan, Iran
[2] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
[3] Univ Hradec Kralove, Dept Appl Cybernet, Hradec Kralove 50003, Czech Republic
关键词
Optimization; bio-inspired; red panda; metaheuristic; exploration; exploitation; SEARCH ALGORITHM; PLACEMENT; STRATEGY; COLONY;
D O I
10.1109/ACCESS.2023.3283422
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new bio-inspired metaheuristic algorithm called Red Panda Optimization (RPO) that imitates the natural behaviors of red pandas in nature. The main design idea of RPO is derived from two characteristic natural behaviors of red pandas: (i) foraging strategy, and (ii) climbing trees to rest. The proposed RPO approach is mathematically modeled in two phases of exploration based on the simulation of red pandas' foraging strategy and exploitation based on the simulation of red pandas' movement in climbing trees. The main advantage of the proposed approach is that there is no control parameter in its mathematical modeling, and for this reason, it does not need a parameter adjustment process. The performance of RPO is evaluated on fifty-two standard benchmark functions including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types as well as CEC 2017 test suite. The optimization results obtained by the proposed RPO approach are compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that RPO, by maintaining the balance between exploration and exploitation, is effective in solving optimization problems and its performance is superior over competitor algorithms. Based on the analysis of the optimization results, RPO has provided more successful performance compared to the competitor algorithms in 100% of unimodal functions, 100% of high-dimensional multimodal functions, 100% of fixed-dimensional multimodal functions, and 86.2% of CEC 2017 test suite benchmark functions. Also, the statistical analysis of the Wilcoxon rank sum test shows that the superiority of RPO in the competition with the compared algorithms is significant from a statistical point of view. In addition, the results of implementing RPO on four engineering design problems confirms the ability of the proposed approach to handle real-world optimization applications.
引用
收藏
页码:57203 / 57227
页数:25
相关论文
共 50 条
  • [1] Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
    Dehghani, Mohammad
    Trojovsky, Pavel
    [J]. FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2023, 8
  • [2] Bobcat Optimization Algorithm: an effective bio-inspired metaheuristic algorithm for solving supply chain optimization problems
    Benmamoun, Zoubida
    Khlie, Khaoula
    Bektemyssova, Gulnara
    Dehghani, Mohammad
    Gherabi, Youness
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Montazeri, Zeinab
    Bektemyssova, Gulnara
    Malik, Om Parkash
    Dhiman, Gaurav
    Ahmed, Ayman E. M.
    [J]. BIOMIMETICS, 2023, 8 (06)
  • [4] Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems
    Dehghani, Mohammad
    Montazeri, Zeinab
    Trojovska, Eva
    Trojovsky, Pavel
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [5] Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Bektemyssova, Gulnara
    Montazeri, Zeinab
    Shaikemelev, Galymzhan
    Malik, Om Parkash
    Dhiman, Gaurav
    [J]. BIOMIMETICS, 2023, 8 (06)
  • [6] Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Al-Baik, Osama
    Alomari, Saleh
    Alssayed, Omar
    Gochhait, Saikat
    Leonova, Irina
    Dutta, Uma
    Malik, Om Parkash
    Montazeri, Zeinab
    Dehghani, Mohammad
    [J]. BIOMIMETICS, 2024, 9 (02)
  • [7] Siberian Tiger Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
    Trojovsky, Pavel
    Dehghani, Mohammad
    Hanus, Pavel
    [J]. IEEE ACCESS, 2022, 10 : 132396 - 132431
  • [8] Arctic puffin optimization: A bio-inspired metaheuristic algorithm for solving engineering design optimization
    Wang, Wen-chuan
    Tian, Wei-can
    Xu, Dong-mei
    Zang, Hong-fei
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2024, 195
  • [9] Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Trojovsky, Pavel
    Malik, Om Parkash
    [J]. BIOMIMETICS, 2023, 8 (01)
  • [10] Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Alsayyed, Omar
    Hamadneh, Tareq
    Al-Tarawneh, Hassan
    Alqudah, Mohammad
    Gochhait, Saikat
    Leonova, Irina
    Malik, Om Parkash
    Dehghani, Mohammad
    [J]. BIOMIMETICS, 2023, 8 (08)