Bobcat Optimization Algorithm: an effective bio-inspired metaheuristic algorithm for solving supply chain optimization problems

被引:0
|
作者
Benmamoun, Zoubida [1 ]
Khlie, Khaoula [1 ]
Bektemyssova, Gulnara [2 ]
Dehghani, Mohammad [3 ]
Gherabi, Youness [4 ]
机构
[1] Liwa Coll, Abu Dhabi, U Arab Emirates
[2] Int Informat Technol Univ, Dept Comp Engn, Alma Ata 050000, Kazakhstan
[3] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control Engn, Shiraz 7155713876, Iran
[4] Hassan I Univ, Fac Econ & Management, Res Lab Econ Management & Business Management LARE, Settat 26002, Morocco
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Optimization; Supply chain; Bio-inspired; Bobcat; Metaheuristic; Exploration; Exploitation; COVARIANCE-MATRIX ADAPTATION; EVOLUTION; STRATEGY; WMA;
D O I
10.1038/s41598-024-70497-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Supply chain efficiency is a major challenge in today's business environment, where efficient resource allocation and coordination of activities are essential for competitive advantage. Traditional efficiency strategies often struggle for resources for the complex and dynamic network. In response, bio-inspired metaheuristic algorithms have emerged as powerful tools to solve these optimization problems. Referring to the random search nature of metaheuristic algorithms and emphasizing that no metaheuristic algorithm is the best optimizer for all optimization applications, the No Free Lunch (NFL) theorem encourages researchers to design newer algorithms to be able to provide more effective solutions to optimization problems. Motivated by the NFL theorem, the innovation and novelty of this paper is in designing a new meta-heuristic algorithm called Bobcat Optimization Algorithm (BOA) that imitates the natural behavior of bobcats in the wild. The basic inspiration of BOA is derived from the hunting strategy of bobcats during the attack towards the prey and the chase process between them. The theory of BOA is stated and then mathematically modeled in two phases (i) exploration based on the simulation of the bobcat's position change while moving towards the prey and (ii) exploitation based on simulating the bobcat's position change during the chase process to catch the prey. The performance of BOA is evaluated in optimization to handle the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100, as well as to address CEC 2020. The optimization results show that BOA has a high ability in exploration, exploitation, and balance them during the search process in order to achieve a suitable solution for optimization problems. The results obtained from BOA are compared with the performance of twelve well-known metaheuristic algorithms. The findings show that BOA has been successful in handling the CEC 2017 test suite in 89.65, 79.31, 93.10, and 89.65% of the functions for the problem dimension equal to 10, 30, 50, and 100, respectively. Also, the findings show that in order to handle the CEC 2020 test suite, BOA has been successful in 100% of the functions of this test suite. The statistical analysis confirms that BOA has a significant statistical superiority in the competition with the compared algorithms. Also, in order to analyze the efficiency of BOA in dealing with real world applications, twenty-two constrained optimization problems from CEC 2011 test suite and four engineering design problems have been selected. The findings show that BOA has been successful in 90.90% of CEC2011 test suite optimization problems and in 100% of engineering design problems. In addition, the efficiency of BOA to handle SCM applications has been challenged to solve ten case studies in the field of sustainable lot size optimization. The findings show that BOA has successfully provided superior performance in 100% of the case studies compared to competitor algorithms.
引用
收藏
页数:62
相关论文
共 50 条
  • [1] Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
    Givi, Hadi
    Dehghani, Mohammad
    Hubalovsky, Stepan
    [J]. IEEE ACCESS, 2023, 11 : 57203 - 57227
  • [2] Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Montazeri, Zeinab
    Bektemyssova, Gulnara
    Malik, Om Parkash
    Dhiman, Gaurav
    Ahmed, Ayman E. M.
    [J]. BIOMIMETICS, 2023, 8 (06)
  • [3] Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems
    Dehghani, Mohammad
    Montazeri, Zeinab
    Trojovska, Eva
    Trojovsky, Pavel
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [4] Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Bektemyssova, Gulnara
    Montazeri, Zeinab
    Shaikemelev, Galymzhan
    Malik, Om Parkash
    Dhiman, Gaurav
    [J]. BIOMIMETICS, 2023, 8 (06)
  • [5] Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Al-Baik, Osama
    Alomari, Saleh
    Alssayed, Omar
    Gochhait, Saikat
    Leonova, Irina
    Dutta, Uma
    Malik, Om Parkash
    Montazeri, Zeinab
    Dehghani, Mohammad
    [J]. BIOMIMETICS, 2024, 9 (02)
  • [6] Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
    Dehghani, Mohammad
    Trojovsky, Pavel
    [J]. FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2023, 8
  • [7] Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Alsayyed, Omar
    Hamadneh, Tareq
    Al-Tarawneh, Hassan
    Alqudah, Mohammad
    Gochhait, Saikat
    Leonova, Irina
    Malik, Om Parkash
    Dehghani, Mohammad
    [J]. BIOMIMETICS, 2023, 8 (08)
  • [8] Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Trojovsky, Pavel
    Malik, Om Parkash
    [J]. BIOMIMETICS, 2023, 8 (01)
  • [9] Siberian Tiger Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
    Trojovsky, Pavel
    Dehghani, Mohammad
    Hanus, Pavel
    [J]. IEEE ACCESS, 2022, 10 : 132396 - 132431
  • [10] A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior
    Pavel Trojovský
    Mohammad Dehghani
    [J]. Scientific Reports, 13