The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy

被引:126
|
作者
Lee, N. J. [1 ]
Yoo, J. W. [1 ]
Choi, Y. J. [1 ,2 ]
Kang, C. J. [1 ,2 ]
Jeon, D. Y. [3 ]
Kim, D. C. [3 ]
Seo, S. [3 ]
Chung, H. J. [3 ]
机构
[1] Myongji Univ, Dept Nano Sci & Engn, Yongin 449728, Gyeonggi Do, South Korea
[2] Myongji Univ, Dept Phys, Yongin 449728, Gyeonggi Do, South Korea
[3] Samsung Adv Inst Technol, Yongin 446712, Gyeonggi Do, South Korea
关键词
carrier density; graphene; surface potential; work function; CARBON; LAYER;
D O I
10.1063/1.3269597
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on the interlayer screening effect of graphene using Kelvin probe force microscopy (KPFM). By using a gate device configuration that enables the supply of electronic carriers in graphene sheets, the vertical screening properties were studied from measuring the surface potential gradient. The results show layer-dependence of graphene sheets, as the number of graphene layers increases, the surface potential decreases exponentially. In addition, we calculate the work function-related information of the graphene layers using KPFM.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] AFM tip characterization by Kelvin probe force microscopy
    Barth, C.
    Hynninen, T.
    Bieletzki, M.
    Henry, C. R.
    Foster, A. S.
    Esch, F.
    Heiz, U.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [42] Signal amplitude and sensitivity of the Kelvin probe force microscopy
    Ouisse, T
    Martins, F
    Stark, M
    Huant, S
    Chevrier, J
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [43] The influence of surface topography on Kelvin probe force microscopy
    Sadewasser, S.
    Leendertz, C.
    Streicher, F.
    Lux-Steiner, M. Ch
    [J]. NANOTECHNOLOGY, 2009, 20 (50)
  • [44] Dual-heterodyne Kelvin probe force microscopy
    Grévin, Benjamin
    Husainy, Fatima
    Aldakov, Dmitry
    Aumaître, Cyril
    [J]. Beilstein Journal of Nanotechnology, 2023, 14 : 1068 - 1084
  • [45] Three-Dimensional Kelvin Probe Force Microscopy
    Geng, Junyuan
    Zhang, Hao
    Meng, Xianghe
    Gao, Haibo
    Rong, Weibin
    Xie, Hui
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32719 - 32728
  • [46] Kelvin probe force microscopy for perovskite solar cells
    Kang, Zhuo
    Si, Haonan
    Shi, Mingyue
    Xu, Chenzhe
    Fan, Wenqiang
    Ma, Shuangfei
    Kausar, Ammarah
    Liao, Qingliang
    Zhang, Zheng
    Zhang, Yue
    [J]. SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 776 - 789
  • [47] Atomic and Kelvin probe force microscopy of thin films
    Alessandrini, A
    Valdrè, U
    [J]. PROCEEDINGS OF THE 5TH MULTINATIONAL CONGRESS ON ELECTRON MICROSCOPY, 2001, : 553 - 554
  • [48] The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy
    Garrett, Joseph L.
    Somers, David
    Munday, Jeremy N.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (21) : 1 - 8
  • [49] Space Charge Measurements with Kelvin Probe Force Microscopy
    Faliya, Kapil
    Kliem, Herbert
    Dias, Carlos J.
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (03) : 1913 - 1922
  • [50] The role of the cantilever in Kelvin probe force microscopy measurements
    Elias, George
    Glatzel, Thilo
    Meyer, Ernst
    Schwarzman, Alex
    Boag, Amir
    Rosenwaks, Yossi
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2011, 2 : 252 - 260