The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy

被引:126
|
作者
Lee, N. J. [1 ]
Yoo, J. W. [1 ]
Choi, Y. J. [1 ,2 ]
Kang, C. J. [1 ,2 ]
Jeon, D. Y. [3 ]
Kim, D. C. [3 ]
Seo, S. [3 ]
Chung, H. J. [3 ]
机构
[1] Myongji Univ, Dept Nano Sci & Engn, Yongin 449728, Gyeonggi Do, South Korea
[2] Myongji Univ, Dept Phys, Yongin 449728, Gyeonggi Do, South Korea
[3] Samsung Adv Inst Technol, Yongin 446712, Gyeonggi Do, South Korea
关键词
carrier density; graphene; surface potential; work function; CARBON; LAYER;
D O I
10.1063/1.3269597
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on the interlayer screening effect of graphene using Kelvin probe force microscopy (KPFM). By using a gate device configuration that enables the supply of electronic carriers in graphene sheets, the vertical screening properties were studied from measuring the surface potential gradient. The results show layer-dependence of graphene sheets, as the number of graphene layers increases, the surface potential decreases exponentially. In addition, we calculate the work function-related information of the graphene layers using KPFM.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Kelvin probe force microscopy and its application
    Melitz, Wilhelm
    Shen, Jian
    Kummel, Andrew C.
    Lee, Sangyeob
    [J]. SURFACE SCIENCE REPORTS, 2011, 66 (01) : 1 - 27
  • [22] Practical aspects of Kelvin probe force microscopy
    Jacobs, HO
    Knapp, HF
    Stemmer, A
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (03): : 1756 - 1760
  • [23] On the deconvolution of Kelvin probe force microscopy data
    Bluemel, A.
    Plank, H.
    Klug, A.
    Fisslthaler, E.
    Sezen, M.
    Grogger, W.
    List, E. J. W.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05):
  • [24] Kelvin probe force microscopy for material characterization
    Glatzel, Thilo
    Gysin, Urs
    Meyer, Ernst
    [J]. MICROSCOPY, 2022, 71 : i165 - i173
  • [25] Kelvin Probe Force Microscopy in Nonpolar Liquids
    Domanski, Anna L.
    Sengupta, Esha
    Bley, Karina
    Untch, Maria B.
    Weber, Stefan A. L.
    Landfester, Katharina
    Weiss, Clemens K.
    Butt, Hans-Juergen
    Berger, Ruediger
    [J]. LANGMUIR, 2012, 28 (39) : 13892 - 13899
  • [26] Resolution and contrast in Kelvin probe force microscopy
    Jacobs, HO
    Leuchtmann, P
    Homan, OJ
    Stemmer, A
    [J]. JOURNAL OF APPLIED PHYSICS, 1998, 84 (03) : 1168 - 1173
  • [27] Quantitative AC - Kelvin Probe Force Microscopy
    Kohl, Dominik
    Mesquida, Patrick
    Schitter, Georg
    [J]. MICROELECTRONIC ENGINEERING, 2017, 176 : 28 - 32
  • [28] Kelvin probe force microscopy study on nanotriboelectrification
    Sun, Hao
    Chu, Haibin
    Wang, Jinyong
    Ding, Lei
    Li, Yan
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (08)
  • [29] Characterization of graphene layers by Kelvin probe force microscopy and micro-Raman spectroscopy
    Nazarov, A. N.
    Gordienko, S. O.
    Lytvyn, P. M.
    Strelchuk, V. V.
    Nikolenko, A. S.
    Vasin, A. V.
    Rusavsky, A. V.
    Lysenko, V. S.
    Popov, V. P.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 7-8, 2013, 10 (7-8): : 1172 - 1175
  • [30] Observing Electrochemical Reactions on Suspended Graphene: An Operando Kelvin Probe Force Microscopy Approach
    Khatun, Salma
    Cohen, Sidney R.
    Peled, Sa'ar Shor
    Rosenhek-Goldian, Irit
    Weatherup, Robert S.
    Eren, Baran
    [J]. ADVANCED MATERIALS INTERFACES, 2021, 8 (18)