AFM tip characterization by Kelvin probe force microscopy

被引:44
|
作者
Barth, C. [1 ]
Hynninen, T. [3 ,4 ]
Bieletzki, M. [2 ]
Henry, C. R. [1 ]
Foster, A. S. [3 ,4 ]
Esch, F. [2 ]
Heiz, U. [2 ]
机构
[1] Aix Marseille Univ, Ctr Interdisciplinaire Nanosci Marseille, CINaM, CNRS,UPR 3118, F-13288 Marseille 09, France
[2] Tech Univ Munich, Lehrstuhl Phys Chem, Dept Chem, D-85748 Garching, Germany
[3] Tampere Univ Technol, Dept Phys, FIN-33101 Tampere, Finland
[4] Aalto Univ, Sch Sci & Technol, Dept Appl Phys, FI-00076 Helsinki, Finland
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
关键词
SURFACE;
D O I
10.1088/1367-2630/12/9/093024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reliable determination of the surface potential with spatial resolution is key for understanding complex interfaces that range from nanostructured surfaces to molecular systems to biological membranes. In this context, Kelvin probe force microscopy (KPFM) has become the atomic force microscope (AFM) method of choice for mapping the local electrostatic surface potential as it changes laterally due to variations in the surface work function or surface charge distribution. For reliable KPFM measurements, the influence of the tip on the measured electrostatic surface potential has to be understood. We show here that the mean Kelvin voltage can be used for a straightforward characterization of the electrostatic signature of neutral, charged and polar tips, the starting point for quantitative measurements and for tip-charge control for AFM manipulation experiments. This is proven on thin MgO(001) islands supported on Ag(001) and is supported by theoretical modeling, which shows that single ions or dipoles at the tip apex dominate the mean Kelvin voltage.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Kelvin probe force microscopy for material characterization
    Glatzel, Thilo
    Gysin, Urs
    Meyer, Ernst
    [J]. MICROSCOPY, 2022, 71 : i165 - i173
  • [2] KELVIN PROBE FORCE MICROSCOPY
    NONNENMACHER, M
    OBOYLE, MP
    WICKRAMASINGHE, HK
    [J]. APPLIED PHYSICS LETTERS, 1991, 58 (25) : 2921 - 2923
  • [3] On the Origin of Extended Resolution in Kelvin Probe Force Microscopy with a Worn Tip Apex
    Luchkin, Sergey Y.
    Stevenson, Keith J.
    [J]. MICROSCOPY AND MICROANALYSIS, 2018, 24 (02) : 126 - 131
  • [4] Kelvin probe force microscopy for characterization of semiconductor devices and processes
    Tanimoto, M
    Vatel, O
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02): : 1547 - 1551
  • [5] Pulsed Force Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Xu, Xiaoji G.
    [J]. ACS NANO, 2020, 14 (04) : 4839 - 4848
  • [6] Scanning Kelvin probe force microscopy and magnetic force microscopy for characterization of duplex stainless steels
    Femenia, M
    Canalias, C
    Pan, J
    Leygraf, C
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) : B274 - B281
  • [7] Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions
    Zahmatkeshsaredorahi, Amirhossein
    Jakob, Devon S.
    Xu, Xiaoji G.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (24): : 9813 - 9827
  • [8] Investigation of the Surface Potential on Iron Nanoparticles During the Corrosion by Atomic Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KFM)
    Raj, X. Joseph
    Nishimura, T.
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (04): : 2090 - 2100
  • [9] Electronic characterization of organic thin films by Kelvin probe force microscopy
    Palermo, V
    Palma, M
    Samorì, P
    [J]. ADVANCED MATERIALS, 2006, 18 (02) : 145 - 164
  • [10] Characterization of corrosion interfaces by the scanning Kelvin probe force microscopy technique
    Guillaumin, V
    Schmutz, P
    Frankel, GS
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) : B163 - B173