Classification of EEG Signals Based on Filter Bank and Sparse Representation in Motor Imagery Brain-Computer Interfaces

被引:2
|
作者
Wang, Jin [1 ]
Wei, Qingguo [1 ]
机构
[1] Nanchang Univ, Sch Informat Engn, Dept Elect Engn, 999 Xuefu Ave, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain-computer interface; motor imagery; common spatial pattern; filter banks; sparse representation; EXISTENCE; RHYTHMS;
D O I
10.1142/S0218126620500346
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
To improve the classification performance of motor imagery (MI) based brain-computer interfaces (BCIs), a new signal processing algorithm for classifying electroencephalogram (EEG) signals by combining filter bank and sparse representation is proposed. The broadband EEG signals of 830Hz are segmented into 10 sub-band signals using a filter bank. EEG signals in each sub-band are spatially filtered by common spatial pattern (CSP). Fisher score combined with grid search is used for selecting the optimal sub-band, the band power of which is employed for designing a dictionary matrix. A testing signal can be sparsely represented as a linear combination of some columns of the dictionary. The sparse coefficients are estimated by l(1) norm optimization, and the residuals of sparse coefficients are exploited for classification. The proposed classification algorithm was applied to two BCI datasets and compared with two traditional broadband CSP-based algorithms. The results showed that the proposed algorithm provided superior classification accuracies, which were better than those yielded by traditional algorithms, verifying the efficacy of the present algorithm.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] A Survey of Analysis and Classification of EEG Signals for Brain-Computer Interfaces
    Ilyas, Mohd Zaizu
    Saad, Puteh
    Ahmad, Muhammad Imran
    PROCEEDINGS 2015 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICOBE 2015), 2015,
  • [12] Classification of Motor Imagery for Ear-EEG based Brain-Computer Interface
    Kim, Yong-Jeong
    Kwak, No-Sang
    Lee, Seong-Whan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 129 - 130
  • [13] The use of EEG modifications due to motor imagery for brain-computer interfaces
    Cincotti, F
    Mattia, D
    Babiloni, C
    Carducci, F
    Salinari, S
    Bianchi, L
    Marciani, MG
    Babiloni, F
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) : 131 - 133
  • [14] Classification of Motor Imagery Electrocorticogram Signals for Brain-Computer Interface
    Zheng, Wenfeng
    Xu, Fangzhou
    Shu, Minglei
    Zhang, Yingchun
    Yuan, Qi
    Lian, Jian
    Zheng, Yuanjie
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 530 - 533
  • [15] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    Sreeja, S. R.
    Samanta, Debasis
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31157 - 31180
  • [16] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    S. R. Sreeja
    Debasis Samanta
    Multimedia Tools and Applications, 2023, 82 : 31157 - 31180
  • [17] Online processing for motor imagery-based brain-computer interfaces relying on EEG
    Arpaia, Pasquale
    Esposito, Antonio
    Moccaldi, Nicola
    Natalizio, Angela
    Parvis, Marco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [18] Crosstalk disrupts the production of motor imagery brain signals in brain-computer interfaces
    Neo, Phoebe S. -H.
    Mayne, Terence
    Fu, Xiping
    Huang, Zhiyi
    Franz, Elizabeth A.
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2021, 9 (01)
  • [19] Convolutional neural network based features for motor imagery EEG signals classification in brain-computer interface system
    Taheri, Samaneh
    Ezoji, Mehdi
    Sakhaei, Sayed Mahmoud
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [20] Time Sparsification of EEG Signals in Motor-Imagery Based Brain Computer Interfaces
    Higashi, Hiroshi
    Tanaka, Toshihisa
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4271 - 4274