The use of EEG modifications due to motor imagery for brain-computer interfaces

被引:37
|
作者
Cincotti, F [1 ]
Mattia, D
Babiloni, C
Carducci, F
Salinari, S
Bianchi, L
Marciani, MG
Babiloni, F
机构
[1] Fdn Santa Lucia, Lab Neurofisiopatol, I-00174 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Fisiol Umana & Farmacol, I-00185 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Neurosci, I-00133 Rome, Italy
[4] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00184 Rome, Italy
关键词
brain-computer interface (BCI); event-related desynchronizations/synchronization (ERD/ERS); high-resolution electroencephalogram (EEG); motor imagery;
D O I
10.1109/TNSRE.2003.814455
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The opening of a communication channel between brain and computer [brain-computer interface (BCI)] is possible by using changes in electroencephalogram (EEG) power spectra related to the imagination of movements. In this paper, we present results obtained by recording EEG during an upper limb motor imagery task in a total of 18 subjects by using low-resolution surface Laplacian, different linear and quadratic classifiers, as well as a variable number of scalp electrodes, from 2 to 26. The results (variable correct classification rate of mental imagery between 75% and 95%) suggest that it is possible to recognize quite reliably ongoing mental movement imagery for BCI applications.
引用
收藏
页码:131 / 133
页数:3
相关论文
共 50 条
  • [1] Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain-Computer Interfaces
    Lu, Yuyi
    Wang, Wenbo
    Lian, Baosheng
    He, Chencheng
    [J]. SUSTAINABILITY, 2024, 16 (15)
  • [2] Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces
    Wu, Huanyu
    Li, Siyang
    Wu, Dongrui
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 527 - 536
  • [3] Analysis of Correlated EEG Activity during Motor Imagery for Brain-Computer Interfaces
    Chung, Yoon Gi
    Kang, Jae Hwan
    Kim, Sung-Phil
    [J]. 2011 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2011, : 337 - 341
  • [4] Closed-loop motor imagery EEG simulation for brain-computer interfaces
    Shin, Hyonyoung
    Suma, Daniel
    He, Bin
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [5] Multi-class motor imagery EEG decoding for brain-computer interfaces
    Wang, Deng
    Miao, Duoqian
    Blohm, Gunnar
    [J]. FRONTIERS IN NEUROSCIENCE, 2012, 6
  • [6] Feature Analysis of EEG Based Brain-Computer Interfaces to Detect Motor Imagery
    Akbar, Saima
    Martinez-Enriquez, A. M.
    Aslam, Muhammad
    Saleem, Rabeeya
    [J]. BRAIN INFORMATICS, BI 2021, 2021, 12960 : 509 - 518
  • [7] Online processing for motor imagery-based brain-computer interfaces relying on EEG
    Arpaia, Pasquale
    Esposito, Antonio
    Moccaldi, Nicola
    Natalizio, Angela
    Parvis, Marco
    [J]. 2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [8] Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces
    Uehara, Takashi
    Sartori, Matteo
    Tanaka, Toshihisa
    Fiori, Simone
    [J]. NEURAL COMPUTATION, 2017, 29 (06) : 1631 - 1666
  • [9] Motor imagery and brain-computer interfaces for restoration of movement
    Neuper, Christa
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 724 - 724
  • [10] EEG datasets for motor imagery brain-computer interface
    Cho, Hohyun
    Ahn, Minkyu
    Ahn, Sangtae
    Kwon, Moonyoung
    Jun, Sung Chan
    [J]. GIGASCIENCE, 2017, 6 (07): : 1 - 8