A Survey of Analysis and Classification of EEG Signals for Brain-Computer Interfaces

被引:0
|
作者
Ilyas, Mohd Zaizu [1 ]
Saad, Puteh [1 ]
Ahmad, Muhammad Imran [1 ]
机构
[1] Univ Malaysia Perlis, Sch Comp & Commun Engn, Embedded Network Comp Res Cluster ENAC, Kampus Tetap Pauh, Arau 02600, Perlis, Malaysia
关键词
Brain computer-interfaces; electroencephalography(EEG); pre-processing; feature extractiong; classification; EEG/ERP;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A Brain Computer-Interfaces (BCI) is a communication system that enables human brain to interact with machines or devices without involving physical contact by using EEG signals generated from brain activity. Selection of the processing technique of the EEG signals at each processing stage is very important to get the robust BCI system. The aim of this paper is to address the various techniques applied for BCI at each stage such as pre-processing, feature extraction and classification stage. This paper discussed the advantages, disadvantages and current trends of BCI at each stage. Finally, the initial experiment result at each BCI stage was discussed at the end of this paper which is different with previous survey paper.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] EEG Subspace Analysis and Classification Using Principal Angles for Brain-Computer Interfaces
    Ashari, Rehab
    Anderson, Charles
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BRAIN COMPUTER INTERFACES (CIBCI), 2014, : 57 - 63
  • [2] Comparison of EEG pattern classification methods for brain-computer interfaces
    Dias, N. S.
    Kamrunnahar, A.
    Mendes, P. M.
    Schiff, S. J.
    Correia, J. H.
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2540 - +
  • [3] Adaptive Classification on Brain-Computer Interfaces Using Reinforcement Signals
    Llera, A.
    Gomez, V.
    Kappen, H. J.
    [J]. NEURAL COMPUTATION, 2012, 24 (11) : 2900 - 2923
  • [4] Applying evolution strategies to preprocessing EEG signals for brain-computer interfaces
    Aler, Ricardo
    Galvan, Ines M.
    Valls, Jose M.
    [J]. INFORMATION SCIENCES, 2012, 215 : 53 - 66
  • [5] Classification of EEG Signals Based on Filter Bank and Sparse Representation in Motor Imagery Brain-Computer Interfaces
    Wang, Jin
    Wei, Qingguo
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (03)
  • [6] Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain-Computer Interfaces
    Lu, Yuyi
    Wang, Wenbo
    Lian, Baosheng
    He, Chencheng
    [J]. SUSTAINABILITY, 2024, 16 (15)
  • [7] A review of classification algorithms for EEG-based brain-computer interfaces
    Lotte, F.
    Congedo, M.
    Lecuyer, A.
    Lamarche, F.
    Arnaldi, B.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) : R1 - R13
  • [8] Factors that affect classification performance in EEG based brain-computer interfaces
    Argunsah, Ali Oezguer
    Cuerueklue, Ali Baran
    Etin, Muejdat
    Ercil, Aytuel
    [J]. 2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 91 - 95
  • [9] EEG-Based Brain-Computer Interfaces: A Thorough Literature Survey
    Hwang, Han-Jeong
    Kim, Soyoun
    Choi, Soobeom
    Im, Chang-Hwan
    [J]. INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 2013, 29 (12) : 814 - 826
  • [10] Classification of EEG Signals for Brain-Computer Interface Applications: Performance Comparison
    Ilyas, M. Z.
    Saad, P.
    Ahmad, M. I.
    Ghani, A. R. I.
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND SCIENCES (ICORAS 2016), 2016,