Classification of EEG Signals for Brain-Computer Interface Applications: Performance Comparison

被引:0
|
作者
Ilyas, M. Z. [1 ]
Saad, P. [1 ]
Ahmad, M. I. [1 ]
Ghani, A. R. I. [2 ]
机构
[1] Univ Malaysia Perlis, Embedded Network Comp Res Cluster ENAC, Sch Comp & Commun Engn PPKKP, Tingkat 1,Kampus Tetap Pauh Putra, Arau 02600, Perlis, Malaysia
[2] Univ Sains Malaysia, Dept Neurosci, Sch Med Sci, Kota Baharu 16150, Kelantan, Malaysia
关键词
Brain-computer Interfaces; Electroencephalogram; Support Vector Machine;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a comparison of Electroencephalogram (EEG) signals classification for Brain Computer-Interfaces (BCI). At present, it is a challenging task to extract the meaningful EEG signal patterns from a large volume of poor quality data and simultaneously with the presence of artifacts noises. Selection of the effective classification technique of the EEG signals at classification stage is very important to get the robust BCI system. Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) and Logistic Regression (LR) were evaluated in this paper. A BCI competition IV - Dataset 1 is used for testing the classifiers. It is shown that LR and SVM are the most efficient classifier with the highest accuracy of 73.03% and 68.97%.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Increasing the Classification Accuracy of EEG based Brain-computer Interface Signals
    Dimitrov, Georgi
    Petrov, Pavel
    Dimitrova, Inna
    Panayotova, Galina
    Garvanov, Ivan
    Bychkov, Olexiy
    Kovatcheva, Eugenia
    Petrova, Pepa
    [J]. 2020 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER INFORMATION TECHNOLOGIES (ACIT), 2020, : 386 - 390
  • [2] Exploring EEG signals in a Brain-Computer Interface
    Zubrycki, Pawel
    Mulawka, Jan
    [J]. PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2014, 2014, 9290
  • [3] A possible use of EEG signals in a brain-computer interface
    Logar, Vito
    Belic, Ales
    [J]. ZDRAVNISKI VESTNIK-SLOVENIAN MEDICAL JOURNAL, 2011, 80 (02): : 92 - 97
  • [4] Classification of EEG signals in the ambiguity domain for brain computer interface applications
    Garcia, G
    Ebrahimi, T
    Vesin, JM
    [J]. DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 301 - 305
  • [5] Sparse Bayesian Classification of EEG for Brain-Computer Interface
    Zhang, Yu
    Zhou, Guoxu
    Jin, Jing
    Zhao, Qibin
    Wang, Xingyu
    Cichocki, Andrzej
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (11) : 2256 - 2267
  • [6] Robust classification of EEG signal for brain-computer interface
    Thulasidas, M
    Guan, C
    Wu, JK
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (01) : 24 - 29
  • [7] A Filtering Method for Classification of Motor-Imagery EEG Signals for Brain-Computer Interface
    Ramya, Pinisetty Sri
    Yashasvi, Kondabolu
    Anjum, Arshiya
    Bhattacharyya, Abhijit
    Pachori, Ram Bilas
    [J]. PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 354 - 360
  • [8] Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface
    Corsi, Marie-Constance
    Chavez, Mario
    Schwartz, Denis
    Hugueville, Laurent
    Khambhati, Ankit N.
    Bassett, Danielle S.
    Fallani, Fabrizio De Vico
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (01)
  • [9] A Survey of Analysis and Classification of EEG Signals for Brain-Computer Interfaces
    Ilyas, Mohd Zaizu
    Saad, Puteh
    Ahmad, Muhammad Imran
    [J]. PROCEEDINGS 2015 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICOBE 2015), 2015,
  • [10] SVM Classification of EEG Signals for Brain Computer Interface
    Costantini, G.
    Todisco, M.
    Casali, D.
    Carota, M.
    Saggio, G.
    Bianchi, L.
    Abbafati, M.
    Quitadamo, L.
    [J]. NEURAL NETS WIRN09, 2009, 204 : 229 - 233