Atom probe tomography of nanostructures

被引:8
|
作者
Gnaser, Hubert [1 ,2 ,3 ]
机构
[1] Inst Oberflachen & Schichtanalyt IFOS, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[3] Univ Kaiserslautern, Forschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
关键词
atom probe tomography; Fe; Cr; Fe multilayers; Si nanocrystals; GaN; LOCAL MAGNIFICATION; SILICON; RECONSTRUCTION; OVERLAPS;
D O I
10.1002/sia.5507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atom probe tomography (APT) constitutes a rather unique analytical technique for the 3D elemental characterization of solid materials with potentially sub-nm spatial resolution. APT is, therefore, very well suited for the analysis of a nanostructured specimen such as matrix-embedded nanoparticles, ultra-thin films and junctions, grain boundaries, and others. This presentation will emphasize these capabilities, describing three methods of data mining that can be used to fully exploit APT: (i) Visualization of atomic lattice planes in crystalline specimens, (ii) the determination of iso-concentration surfaces and proximity histograms derived thereof, and (iii) a cluster identification algorithm based on maximum-atom separations. These approaches will be illustrated by means of different types of samples: a crystalline tungsten specimen, a Fe/Cr/Fe multilayer system, Si nanocrystals embedded in a silicon oxide matrix, and Mg clustering in GaN. The results demonstrate clearly that sub-nm-sized structures can be characterized by APT. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 50 条
  • [41] Atom Probe Tomography: a Local Probe for Chemical Bonds in Solids
    Cojocaru-Mirédin, Oana
    Yu, Yuan
    Köttgen, Jan
    Ghosh, Tanmoy
    Schön, Carl-Friedrich
    Han, Shuai
    Zhou, Chongjian
    Zhu, Min
    Wuttig, Matthias
    [J]. Advanced Materials, 2024, 36 (50)
  • [42] Pragmatic reconstruction methods in atom probe tomography
    Vurpillot, F.
    Gruber, M.
    Da Costa, G.
    Martin, I.
    Renaud, L.
    Bostel, A.
    [J]. ULTRAMICROSCOPY, 2011, 111 (08) : 1286 - 1294
  • [43] Quantitative Atom Probe Tomography of Magnesium Alloys
    Oh-ishi, K.
    Ohkubo, T.
    Hono, K.
    [J]. MICROSCOPY AND MICROANALYSIS, 2009, 15 : 14 - 15
  • [44] Introduction: Special issue on atom probe tomography
    Ringer, Simon P.
    Larson, David J.
    Moody, Michael P.
    Miller, Michael K.
    Kelly, Thomas F.
    [J]. MICROSCOPY AND MICROANALYSIS, 2007, 13 (06) : 407 - 407
  • [45] Electron diffraction and imaging for atom probe tomography
    Kirchhofer, Rita
    Diercks, David R.
    Gorman, Brian P.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (05):
  • [46] Atom probe tomography quantification of carbon in silicon
    Dumas, P.
    Duguay, S.
    Borrel, J.
    Hilario, F.
    Blavette, D.
    [J]. Ultramicroscopy, 2021, 220
  • [47] Spatial distribution maps for atom probe tomography
    Geiser, Brian P.
    Kelly, Thomas F.
    Larson, David J.
    Schneir, Jason
    Roberts, Jay P.
    [J]. MICROSCOPY AND MICROANALYSIS, 2007, 13 (06) : 437 - 447
  • [48] Atom probe tomography: A technique for nanoscale characterization
    Miller, MK
    Kenik, EA
    [J]. MICROSCOPY AND MICROANALYSIS, 2004, 10 (03) : 336 - 341
  • [49] Dopant measurements in semiconductors with atom probe tomography
    Ronsheim, P. A.
    Hatzistergos, M.
    Jin, S.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (01): : C1E1 - C1E4
  • [50] Atom Probe Tomography of Zinc Oxide Nanowires
    Dawahre, Nabil
    Shen, Gang
    Balci, Soner
    Baughman, William
    Wilbert, David S.
    Harris, Nick
    Butler, Lee
    Martens, Rich
    Kim, Seongsin Margaret
    Kung, Patrick
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (05) : 801 - 808