Atom probe tomography of nanostructures

被引:8
|
作者
Gnaser, Hubert [1 ,2 ,3 ]
机构
[1] Inst Oberflachen & Schichtanalyt IFOS, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[3] Univ Kaiserslautern, Forschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
关键词
atom probe tomography; Fe; Cr; Fe multilayers; Si nanocrystals; GaN; LOCAL MAGNIFICATION; SILICON; RECONSTRUCTION; OVERLAPS;
D O I
10.1002/sia.5507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atom probe tomography (APT) constitutes a rather unique analytical technique for the 3D elemental characterization of solid materials with potentially sub-nm spatial resolution. APT is, therefore, very well suited for the analysis of a nanostructured specimen such as matrix-embedded nanoparticles, ultra-thin films and junctions, grain boundaries, and others. This presentation will emphasize these capabilities, describing three methods of data mining that can be used to fully exploit APT: (i) Visualization of atomic lattice planes in crystalline specimens, (ii) the determination of iso-concentration surfaces and proximity histograms derived thereof, and (iii) a cluster identification algorithm based on maximum-atom separations. These approaches will be illustrated by means of different types of samples: a crystalline tungsten specimen, a Fe/Cr/Fe multilayer system, Si nanocrystals embedded in a silicon oxide matrix, and Mg clustering in GaN. The results demonstrate clearly that sub-nm-sized structures can be characterized by APT. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 50 条
  • [31] Atom Probe Tomography on Semiconductor Devices
    Khan, Mansoor Ali
    Ringer, Simon P.
    Zheng, Rongkun
    [J]. ADVANCED MATERIALS INTERFACES, 2016, 3 (12):
  • [32] Sensitivity And Quantitativity In Atom Probe Tomography
    Danoix, F.
    Bostel, A.
    Leitner, H.
    Jessner, P.
    Sauvage, X.
    Goune, M.
    Danoix, R.
    [J]. MICROSCOPY AND MICROANALYSIS, 2009, 15 : 258 - 259
  • [33] Atom probe tomography for advanced metallization
    Mangelinck, D.
    Panciera, F.
    Hoummada, K.
    El Kousseifi, M.
    Perrin, C.
    Descoins, M.
    Portavoce, A.
    [J]. MICROELECTRONIC ENGINEERING, 2014, 120 : 19 - 33
  • [34] Atom probe tomography for biomaterials and biomineralization
    Grandfield, Kathryn
    Micheletti, Chiara
    Deering, Joseph
    Arcuri, Gabriel
    Tang, Tengteng
    Langelier, Brian
    [J]. ACTA BIOMATERIALIA, 2022, 148 : 44 - 60
  • [35] Atom probe tomography: Looking forward
    Gault, Baptiste
    Larson, David J.
    [J]. SCRIPTA MATERIALIA, 2018, 148 : 73 - +
  • [36] Atom probe tomography of nitride semiconductors
    Rigutti, L.
    Bonef, B.
    Speck, J.
    Tang, F.
    Oliver, R. A.
    [J]. SCRIPTA MATERIALIA, 2018, 148 : 75 - 81
  • [37] Atom Probe Tomography of Oxide Scales
    K. Stiller
    L. Viskari
    G. Sundell
    F. Liu
    M. Thuvander
    H.-O. Andrén
    D. J. Larson
    T. Prosa
    D. Reinhard
    [J]. Oxidation of Metals, 2013, 79 : 227 - 238
  • [38] Spatial Resolution in Atom Probe Tomography
    Gault, Baptiste
    Moody, Michael P.
    De Geuser, Frederic
    La Fontaine, Alex
    Stephenson, Leigh T.
    Haley, Daniel
    Ringer, Simon P.
    [J]. MICROSCOPY AND MICROANALYSIS, 2010, 16 (01) : 99 - 110
  • [39] An Atom-Probe Tomography Primer
    Seidman, David N.
    Stiller, Krystyna
    [J]. MRS BULLETIN, 2009, 34 (10) : 717 - 724
  • [40] An Atom-Probe Tomography Primer
    David N. Seidman
    Krystyna Stiller
    [J]. MRS Bulletin, 2009, 34 : 717 - 724