Arithmetic operators in interval-valued fuzzy set theory

被引:127
|
作者
Deschrijver, Glad [1 ]
机构
[1] Univ Ghent, Dept Math & Comp Sci, Fuzziness & Uncertainty Modelling Res Unit, B-9000 Ghent, Belgium
关键词
t-norm on L-1; arithmetic operators on L-1; sum; difference; product; quotient; addition; subtraction; multiplication;
D O I
10.1016/j.ins.2007.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the addition, subtraction, multiplication and division on L-1, where L-1 is the underlying lattice of both interval-valued fuzzy set theory [R. Sambuc, Fonctions Phi-floues. Application l'aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis, Universite de Marseille, France, 1975] and intuitionistic fuzzy set theory [K.T. Atanassov, Intuitionistic, fuzzy sets, 1983, VII ITKR's Session, Sofia (deposed in Central Sci. Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)]. We investigate some algebraic properties of these operators. We show that using these operators the pseudo-t-representable extensions of the Lukasiewicz t-norm and the product t-norm on the unit interval to L-1 and some related operators can be written in a similar way as their counterparts on ([0,1],<=). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2906 / 2924
页数:19
相关论文
共 50 条
  • [21] On the Decomposition of Interval-Valued Fuzzy Morphological Operators
    Tom Mélange
    Mike Nachtegael
    Peter Sussner
    Etienne E. Kerre
    Journal of Mathematical Imaging and Vision, 2010, 36 : 270 - 290
  • [22] Interval-valued intuitionistic fuzzy aggregation operators
    Weize Wang 1
    2. State Key Laboratory of Rail Traffic Control and Safety
    Journal of Systems Engineering and Electronics, 2012, 23 (04) : 574 - 580
  • [23] Interval-valued intuitionistic fuzzy aggregation operators
    Wang, Weize
    Liu, Xinwang
    Qin, Yong
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2012, 23 (04) : 574 - 580
  • [24] On interval-valued fuzzy rough approximation operators
    Tang, Weidong
    Wu, Jinzhao
    Liu, Meiling
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 166 - 180
  • [25] On the Decomposition of Interval-Valued Fuzzy Morphological Operators
    Melange, Tom
    Nachtegael, Mike
    Sussner, Peter
    Kerre, Etienne E.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2010, 36 (03) : 270 - 290
  • [26] Quasi-arithmetic means and OWA functions in interval-valued and Atanassov's intuitionistic fuzzy set theory
    Deschrijver, Glad
    PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011, 2011, : 506 - 513
  • [27] On Interval-Valued Fuzzy Soft Set Theory Applied To Ternary Semigroups
    P. Yiarayong
    Lobachevskii Journal of Mathematics, 2021, 42 : 222 - 230
  • [29] Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory
    Asiain, Maria J.
    Bustince, Humberto
    Mesiar, Radko
    Kolesarova, Anna
    Takac, Zdenko
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (02) : 556 - 568
  • [30] Generalised Interval-Valued Fuzzy Soft Set
    Alkhazaleh, Shawkat
    Salleh, Abdul Razak
    JOURNAL OF APPLIED MATHEMATICS, 2012,