Arithmetic operators in interval-valued fuzzy set theory

被引:127
|
作者
Deschrijver, Glad [1 ]
机构
[1] Univ Ghent, Dept Math & Comp Sci, Fuzziness & Uncertainty Modelling Res Unit, B-9000 Ghent, Belgium
关键词
t-norm on L-1; arithmetic operators on L-1; sum; difference; product; quotient; addition; subtraction; multiplication;
D O I
10.1016/j.ins.2007.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the addition, subtraction, multiplication and division on L-1, where L-1 is the underlying lattice of both interval-valued fuzzy set theory [R. Sambuc, Fonctions Phi-floues. Application l'aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis, Universite de Marseille, France, 1975] and intuitionistic fuzzy set theory [K.T. Atanassov, Intuitionistic, fuzzy sets, 1983, VII ITKR's Session, Sofia (deposed in Central Sci. Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)]. We investigate some algebraic properties of these operators. We show that using these operators the pseudo-t-representable extensions of the Lukasiewicz t-norm and the product t-norm on the unit interval to L-1 and some related operators can be written in a similar way as their counterparts on ([0,1],<=). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2906 / 2924
页数:19
相关论文
共 50 条
  • [41] Basic Properties of the Interval-valued Fuzzy Morphological Operators
    Melange, Tom
    Nachtegael, Mike
    Sussner, Peter
    Kerre, Etienne
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [42] The Archimedean property for t-norms in interval-valued fuzzy set theory
    Deschrijver, Glad
    FUZZY SETS AND SYSTEMS, 2006, 157 (17) : 2311 - 2327
  • [43] Representations of Archimedean t-norms in interval-valued fuzzy set theory
    Deschrijver, Glad
    NEW DIMENSIONS IN FUZZY LOGIC AND RELATED TECHNOLOGIES, VOL I, PROCEEDINGS, 2007, : 53 - 60
  • [45] Some New Entropies on the Interval-Valued Fuzzy Set
    Zeng, Wenyi
    Li, Hongxing
    Feng, Shuang
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 189 - +
  • [46] An Interval-Valued Intuitionistic Fuzzy Rough Set Model
    Zhang, Zhiming
    FUNDAMENTA INFORMATICAE, 2009, 97 (04) : 471 - 498
  • [47] Interval-valued fuzzy set modelling of system reliability
    Guo, RK
    Advanced Reliability Modeling, 2004, : 157 - 164
  • [48] Interval-valued Level Cut Sets of Fuzzy Set
    Yuan, Xue-hai
    Li, Hong-xing
    Sun, Kai-biao
    FUZZY INFORMATION AND ENGINEERING, 2011, 3 (02) : 209 - 222
  • [49] An interval-valued rough intuitionistic fuzzy set model
    Zhang, Zhiming
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2010, 39 (02) : 135 - 164
  • [50] New operations for interval-valued Pythagorean fuzzy set
    Peng, X.
    SCIENTIA IRANICA, 2019, 26 (02) : 1049 - 1076