Two remarks about non-vanishing elements in finite groups

被引:3
|
作者
Grueninger, Matthias [1 ]
机构
[1] Univ Wurzburg, Emil Fischer Str 30, D-97074 Wurzburg, Germany
关键词
Finite groups; Characters; Non-vanishing elements;
D O I
10.1016/j.jalgebra.2016.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. We prove that for x is an element of G we have chi(x) not equal 0 for all irreducible characters chi of G iff the class sum of x in the group algebra over C is a unit. From this we conclude that if G has a normal p-subgroup V and a Hall p'-subgroup, then G has non-vanishing elements different from 1. Hence we get another proof that a finite solvable group always has non-trivial non-vanishing elements. Moreover, we give an example for a finite solvable group G which has a non-vanishing involution not contained in an abelian normal subgroup of G. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 369
页数:4
相关论文
共 50 条
  • [41] ON THE NON-VANISHING OF SHALIKA NEWVECTORS AT THE IDENTITY
    Grobner, Harald
    Matringe, Nadir
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2024, 28 (558): : 93 - 106
  • [42] Non-vanishing of Hilbert Poincare series
    Kumari, Moni
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) : 1476 - 1485
  • [43] NON-VANISHING FOR GROUP LP-COHOMOLOGY OF SOLVABLE AND SEMISIMPLE LIE GROUPS
    Bourdon, Marc
    Remy, Bertrand
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2023, 10 : 771 - 814
  • [44] Non-vanishing of periods of automorphic functions
    Reznikov, A
    FORUM MATHEMATICUM, 2001, 13 (04) : 485 - 493
  • [45] On the commutant of asymptotically non-vanishing contractions
    Geher, Gyoergy Pal
    Kerchy, Laszlo
    PERIODICA MATHEMATICA HUNGARICA, 2011, 63 (02) : 191 - 203
  • [46] Non-vanishing Fourier coefficients of Δk
    Tian, Peng
    Qin, Hourong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 507 - 515
  • [47] On the non-vanishing of Jacobi Poincaré series
    Karam Deo Shankhadhar
    The Ramanujan Journal, 2017, 43 : 1 - 14
  • [48] Teleparallel gravity with non-vanishing curvature
    Wanas, M. I.
    Ammar, Samah A.
    Refaey, Shymaa A.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (12) : 1373 - 1383
  • [49] Non-vanishing of Miyawaki type lifts
    Kim, Henry H.
    Yamauchi, Takuya
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2019, 89 (02): : 117 - 134
  • [50] A note on the effective non-vanishing conjecture
    Xie, Qihong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 61 - 63