Two remarks about non-vanishing elements in finite groups

被引:3
|
作者
Grueninger, Matthias [1 ]
机构
[1] Univ Wurzburg, Emil Fischer Str 30, D-97074 Wurzburg, Germany
关键词
Finite groups; Characters; Non-vanishing elements;
D O I
10.1016/j.jalgebra.2016.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. We prove that for x is an element of G we have chi(x) not equal 0 for all irreducible characters chi of G iff the class sum of x in the group algebra over C is a unit. From this we conclude that if G has a normal p-subgroup V and a Hall p'-subgroup, then G has non-vanishing elements different from 1. Hence we get another proof that a finite solvable group always has non-trivial non-vanishing elements. Moreover, we give an example for a finite solvable group G which has a non-vanishing involution not contained in an abelian normal subgroup of G. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 369
页数:4
相关论文
共 50 条
  • [11] GROUP ACTIONS RELATED TO NON-VANISHING ELEMENTS
    Wolf, Thomas R.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2014, 3 (02) : 41 - 51
  • [12] Bounded cohomology of finitely presented groups: vanishing, non-vanishing, and computability
    Fournier-Facio, Francesco
    Loh, Clara
    Moraschini, Marco
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (02) : 1169 - 1202
  • [13] Proportions of vanishing elements in finite groups
    Lucia Morotti
    Hung P. Tong-Viet
    Israel Journal of Mathematics, 2021, 246 : 441 - 457
  • [14] On the orders of vanishing elements of finite groups
    Madanha, Sesuai Y.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
  • [15] On the proportion of vanishing elements in finite groups
    Zeng, Yu
    Yang, Dongfang
    Dolfi, Silvio
    JOURNAL OF ALGEBRA, 2023, 614 : 825 - 847
  • [16] Proportions of vanishing elements in finite groups
    Morotti, Lucia
    Tong-Viet, Hung P.
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 246 (01) : 441 - 457
  • [17] FINITE GROUPS WITH FEW VANISHING ELEMENTS
    Zhang, Jinshan
    Shen, Zhencai
    Shi, Jiangtao
    GLASNIK MATEMATICKI, 2014, 49 (01) : 83 - 103
  • [18] Geometric non-vanishing
    Douglas Ulmer
    Inventiones mathematicae, 2005, 159 : 133 - 186
  • [19] Vanishing and non-vanishing theta values
    Cohen H.
    Zagier D.
    Annales mathématiques du Québec, 2013, 37 (1) : 45 - 61
  • [20] Geometric non-vanishing
    Ulmer, D
    INVENTIONES MATHEMATICAE, 2005, 159 (01) : 133 - 186