Packing and Covering Triangles in Planar Graphs

被引:9
|
作者
Cui, Qing [1 ]
Haxell, Penny [2 ]
Ma, Will [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Packing and covering; Triangle; Planar graph; CONJECTURE;
D O I
10.1007/s00373-010-0881-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tuza conjectured that if a simple graph G does not contain more than k pairwise edge-disjoint triangles, then there exists a set of at most 2k edges that meets all triangles in G. It has been shown that this conjecture is true for planar graphs and the bound is sharp. In this paper, we characterize the set of extremal planar graphs.
引用
收藏
页码:817 / 824
页数:8
相关论文
共 50 条
  • [21] Covering Triangles in Edge-Weighted Graphs
    Chen, Xujin
    Diao, Zhuo
    Hu, Xiaodong
    Tang, Zhongzheng
    [J]. THEORY OF COMPUTING SYSTEMS, 2018, 62 (06) : 1525 - 1552
  • [22] Covering Triangles in Edge-Weighted Graphs
    Xujin Chen
    Zhuo Diao
    Xiaodong Hu
    Zhongzheng Tang
    [J]. Theory of Computing Systems, 2018, 62 : 1525 - 1552
  • [23] Quasi-Polynomial Time Approximation Schemes for Packing and Covering Problems in Planar Graphs
    Pilipczuk, Michal
    van Leeuwen, Erik Jan
    Wiese, Andreas
    [J]. ALGORITHMICA, 2020, 82 (06) : 1703 - 1739
  • [24] Quasi-Polynomial Time Approximation Schemes for Packing and Covering Problems in Planar Graphs
    Michał Pilipczuk
    Erik Jan van Leeuwen
    Andreas Wiese
    [J]. Algorithmica, 2020, 82 : 1703 - 1739
  • [25] COVERING AND PACKING IN GRAPHS, .1.
    HARARY, F
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 175 (01) : 198 - &
  • [26] Covering planar graphs with forests
    Balogh, J
    Kochol, M
    Pluhár, A
    Yu, XX
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 147 - 158
  • [27] Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles
    Chen, Xujin
    Diao, Zhuo
    Hu, Xiaodong
    Tang, Zhongzheng
    [J]. Combinatorial Algorithms, 2016, 9843 : 266 - 277
  • [28] PACKING PATHS IN PLANAR GRAPHS
    FRANK, A
    [J]. COMBINATORICA, 1990, 10 (04) : 325 - 331
  • [29] Distributed Packing in Planar Graphs
    Czygrinow, Andrzej
    Hanckowiak, Michal
    Wawrzyniak, Wojciech
    [J]. SPAA'08: PROCEEDINGS OF THE TWENTIETH ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2008, : 55 - +
  • [30] Packing trees into planar graphs
    García, A
    Hernando, C
    Hurtado, F
    Noy, M
    Tejel, J
    [J]. JOURNAL OF GRAPH THEORY, 2002, 40 (03) : 172 - 181