Packing and Covering Triangles in Planar Graphs

被引:9
|
作者
Cui, Qing [1 ]
Haxell, Penny [2 ]
Ma, Will [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Packing and covering; Triangle; Planar graph; CONJECTURE;
D O I
10.1007/s00373-010-0881-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tuza conjectured that if a simple graph G does not contain more than k pairwise edge-disjoint triangles, then there exists a set of at most 2k edges that meets all triangles in G. It has been shown that this conjecture is true for planar graphs and the bound is sharp. In this paper, we characterize the set of extremal planar graphs.
引用
收藏
页码:817 / 824
页数:8
相关论文
共 50 条
  • [41] Approximately covering by cycles in planar graphs
    Rautenbach, D
    Reed, B
    [J]. PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 402 - 406
  • [42] On the Complexity of Planar Covering of Small Graphs
    Bilka, Ondrej
    Jirasek, Jozef
    Klavik, Pavel
    Tancer, Martin
    Volec, Jan
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 83 - 94
  • [43] A NOTE ON PACKING PATHS IN PLANAR GRAPHS
    FRANK, A
    SZIGETI, Z
    [J]. MATHEMATICAL PROGRAMMING, 1995, 70 (02) : 201 - 209
  • [44] Edge-packing in planar graphs
    Heath, LS
    Vergara, JPC
    [J]. THEORY OF COMPUTING SYSTEMS, 1998, 31 (06) : 629 - 662
  • [45] Packing and squeezing subgraphs into planar graphs
    Frati, Fabrizio
    Geyer, Markus
    Kaufmann, Michael
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 394 - +
  • [46] Edge-Packing in Planar Graphs
    L. S. Heath
    J. P. C. Vergara
    [J]. Theory of Computing Systems, 1998, 31 : 629 - 662
  • [47] Edge-packing planar graphs by cyclic graphs
    Heath, LS
    Vergara, JPC
    [J]. DISCRETE APPLIED MATHEMATICS, 1998, 81 (1-3) : 169 - 180
  • [48] PLANAR PACKING OF CYCLES AND UNICYCLIC GRAPHS
    Goerlich, Agnieszka
    [J]. DEMONSTRATIO MATHEMATICA, 2009, 42 (04) : 673 - 679
  • [49] Planar 4-critical graphs with four triangles
    Borodin, Oleg V.
    Dvorak, Zdenek
    Kostochka, Alexandr V.
    Lidicky, Bernard
    Yancey, Matthew
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 41 : 138 - 151
  • [50] Total colorings of planar graphs without adjacent triangles
    Sun, Xiang-Yong
    Wu, Jian-Liang
    Wu, Yu-Wen
    Hou, Han-Feng
    [J]. DISCRETE MATHEMATICS, 2009, 309 (01) : 202 - 206