Quasi-Polynomial Time Approximation Schemes for Packing and Covering Problems in Planar Graphs

被引:0
|
作者
Michał Pilipczuk
Erik Jan van Leeuwen
Andreas Wiese
机构
[1] University of Warsaw,Institute of Informatics
[2] Utrecht University,Department of Information and Computing Sciences
[3] Universidad de Chile,Department of Industrial Engineering and Center for Mathematical Modeling
来源
Algorithmica | 2020年 / 82卷
关键词
Approximation schemes; Planar graphs; Independent set of objects; Geometric set cover;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two optimization problems in planar graphs. In Maximum Weight Independent Set of Objects we are given a graph G and a family D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} of objects, each being a connected subgraph of G with a prescribed weight, and the task is to find a maximum-weight subfamily of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} consisting of pairwise disjoint objects. In Minimum Weight Distance Set Cover we are given a graph G in which the edges might have different lengths, two sets D,C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}},{\mathcal {C}}$$\end{document} of vertices of G, where vertices of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} have prescribed weights, and a nonnegative radius r. The task is to find a minimum-weight subset of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} such that every vertex of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} is at distance at most r from some selected vertex. Via simple reductions, these two problems generalize a number of geometric optimization tasks, notably Maximum Weight Independent Set for polygons in the plane and Weighted Geometric Set Cover for unit disks and unit squares. We present quasi-polynomial time approximation schemes (QPTASs) for both of the above problems in planar graphs: given an accuracy parameter ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} we can compute a solution whose weight is within multiplicative factor of (1+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document} from the optimum in time 2poly(1/ϵ,log|D|)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathrm {poly}}(1/\epsilon ,\log |{\mathcal {D}}|)}\cdot n^{{\mathcal {O}}(1)}$$\end{document}, where n is the number of vertices of the input graph. We note that a QPTAS for Maximum Weight Independent Set of Objects would follow from existing work. However, our main contribution is to provide a unified framework that works for both problems in both a planar and geometric setting and to transfer the techniques used for recursive approximation schemes for geometric problems due to Adamaszek and Wiese (in Proceedings of the FOCS 2013, IEEE, 2013; in Proceedings of the SODA 2014, SIAM, 2014) and Har-Peled and Sariel (in Proceedings of the SOCG 2014, SIAM, 2014) to the setting of planar graphs. In particular, this yields a purely combinatorial viewpoint on these methods as a phenomenon in planar graphs.
引用
收藏
页码:1703 / 1739
页数:36
相关论文
共 50 条
  • [1] Quasi-Polynomial Time Approximation Schemes for Packing and Covering Problems in Planar Graphs
    Pilipczuk, Michal
    van Leeuwen, Erik Jan
    Wiese, Andreas
    [J]. ALGORITHMICA, 2020, 82 (06) : 1703 - 1739
  • [2] QUASI-POLYNOMIAL TIME APPROXIMATION SCHEMES FOR THE MAXIMUM WEIGHT INDEPENDENT SET PROBLEM IN H-FREE GRAPHS
    Chudnovsky, Maria
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Thomasse, Stephan
    [J]. SIAM JOURNAL ON COMPUTING, 2024, 53 (01) : 47 - 86
  • [3] Quasi-polynomial time approximation schemes for the Maximum Weight Independent Set Problem in H-free graphs
    Chudnovsky, Maria
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Thomasse, Stephan
    [J]. PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 2260 - 2278
  • [4] Quasi-polynomial time approximation schemes for the Maximum Weight Independent Set Problem in H-free graphs
    Chudnovsky, Maria
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Thomasse, Stephan
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 2260 - 2278
  • [5] Polynomial-Time Approximation Schemes for Circle Packing Problems
    Miyazawa, Flavio K.
    Pedrosa, Lehilton L. C.
    Schouery, Rafael C. S.
    Sviridenko, Maxim
    Wakabayashi, Yoshiko
    [J]. ALGORITHMS - ESA 2014, 2014, 8737 : 713 - 724
  • [6] A Quasi-polynomial Time Approximation Scheme for Euclidean CVRPTW
    Song, Liang
    Huang, Hejiao
    Du, Hongwei
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 66 - 73
  • [7] Polynomial-Time Approximation Schemes for Circle and Other Packing Problems
    Flávio K. Miyazawa
    Lehilton L. C. Pedrosa
    Rafael C. S. Schouery
    Maxim Sviridenko
    Yoshiko Wakabayashi
    [J]. Algorithmica, 2016, 76 : 536 - 568
  • [8] Polynomial-Time Approximation Schemes for Circle and Other Packing Problems
    Miyazawa, Flavio K.
    Pedrosa, Lehilton L. C.
    Schouery, Rafael C. S.
    Sviridenko, Maxim
    Wakabayashi, Yoshiko
    [J]. ALGORITHMICA, 2016, 76 (02) : 536 - 568
  • [9] Polynomial time approximation schemes for class-constrained packing problems
    Shachnai, H
    Tamir, T
    [J]. JOURNAL OF SCHEDULING, 2001, 4 (06) : 313 - 338
  • [10] Quasi-polynomial time approximation schemes for assortment optimization under Mallows-based rankings
    Rieger, Alon
    Segev, Danny
    [J]. MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 111 - 171