Laser diodes employing GaAs1-xBix/GaAs1-yPy quantum well active regions

被引:8
|
作者
Kim, Honghyuk [1 ]
Guan, Yingxin [2 ]
Forghani, Kamran [1 ,3 ]
Kuech, Thomas F. [3 ]
Mawst, Luke J. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] Univ Wisconsin Madison, Dept Mat Sci & Engn, Madison, WI 53706 USA
[3] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA
关键词
metal organic vapor phase epitaxy; bismuth compounds; semiconducting III-V materials; laser diodes; in situ; monitoring; MOLECULAR-BEAM EPITAXY; VAPOR-PHASE EPITAXY; SOLAR-CELLS; BAND-GAP; GROWTH; GAAS; EFFICIENCY; PRECURSORS; MOVPE;
D O I
10.1088/1361-6641/aa729b
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Laser diodes employing strain-compensated GaAs1-xBix/GaAs1-yPy quantum well (QW) active regions were grown by metalorganic vapor phase epitaxy (MOVPE). High resolution x-ray diffraction, room temperature photoluminescence, and in situ optical reflectance monitoring during the MOVPE growth provided valuable feedback for the optimization of the material growth conditions. In addition, the post-growth in situ thermal annealing was employed to improve the radiative efficiency of the GaAs1-xBix/GaAs1-yPy QW structures. Wide ridge waveguide lasers with GaAs barriers exhibited high threshold current densities (J(th) similar to 8 kA cm(-2)), excessive band-filling, and carrier leakage at room temperature, resulting in the lasing from a high energy transition. By contrast, devices employing GaAs1-yPy barriers exhibited significantly lower threshold current densities (J(th) similar to 5.9 kA cm(-2)), and longer wavelength QW emission, presumably as a result of improved active region carrier confinement. Devices with GaAs0.8P0.2 barriers after the post-growth thermal annealing exhibited further reduced threshold current density (J(th) similar to 4.1 kA cm(-2)).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Molecular beam epitaxy growth of GaAs1-xBix
    Tixier, S
    Adamcyk, M
    Tiedje, T
    Francoeur, S
    Mascarenhas, A
    Wei, P
    Schiettekatte, F
    APPLIED PHYSICS LETTERS, 2003, 82 (14) : 2245 - 2247
  • [32] Interface States in p-Type GaAs/GaAs1-xBix Heterostructure
    Fuyuki, Takuma
    Kashiyama, Shota
    Oe, Kunishige
    Yoshimoto, Masahiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (11)
  • [33] Strong excitation intensity dependence of the photoluminescence line shape in GaAs1-xBix single quantum well samples
    Mazur, Yu. I.
    Dorogan, V. G.
    Schmidbauer, M.
    Tarasov, G. G.
    Johnson, S. R.
    Lu, X.
    Ware, M. E.
    Yu, S. -Q.
    Tiedje, T.
    Salamo, G. J.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [34] Anharmonicity in light scattering by optical phonons in GaAs1-xBix
    Joshya, R. S.
    Rajaji, V.
    Narayana, Chandrabhas
    Mascarenhas, A.
    Kini, R. N.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (20)
  • [35] Does Bi form clusters in GaAs1-xBix alloys?
    Punkkinen, M. P. J.
    Laukkanen, P.
    Kuzmin, M.
    Levamaki, H.
    Lang, J.
    Tuominen, M.
    Yasir, M.
    Dahl, J.
    Lu, S.
    Delczeg-Czirjak, E. K.
    Vitos, L.
    Kokko, K.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (11)
  • [36] How much room for BiGa heteroantisites in GaAs1-xBix?
    Ciatto, G.
    Alippi, P.
    Bonapasta, A. Amore
    Tiedje, T.
    APPLIED PHYSICS LETTERS, 2011, 99 (14)
  • [37] ALXGA1-XAS1-Y'PY'-GAAS1-YPY HETEROSTRUCTURE LASER AND LAMP JUNCTIONS
    BURNHAM, RD
    HOLONYAK, N
    SCIFRES, DR
    APPLIED PHYSICS LETTERS, 1970, 17 (10) : 455 - &
  • [38] THz generation mechanisms in the semiconductor alloy, GaAs1-xBix
    Vaisakh, C. P.
    Mascarenhas, A.
    Kini, R. N.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (16)
  • [39] The effect of Bi composition to the optical quality of GaAs1-xBix
    Mohmad, A. R.
    Bastiman, F.
    Hunter, C. J.
    Ng, J. S.
    Sweeney, S. J.
    David, J. P. R.
    APPLIED PHYSICS LETTERS, 2011, 99 (04)
  • [40] AP-MOVPE of thin GaAs1-xBix alloys
    Fitouri, H.
    Moussa, I.
    Rebey, A.
    Fouzri, A.
    El Jani, B.
    JOURNAL OF CRYSTAL GROWTH, 2006, 295 (02) : 114 - 118