Unsupervised Manifold Learning for Video Genre Retrieval

被引:0
|
作者
Almeida, Jurandy [1 ]
Pedronette, Daniel C. G. [2 ]
Penatti, Otavio A. B. [3 ]
机构
[1] Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, Brazil
[2] Sao Paulo State Univ, Dept Stat, Appl Math & Computat, BR-13506900 Rio Claro, SP, Brazil
[3] Adv Technol SAMSUNG Res Inst, BR-13097160 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
video genre retrieval; ranking methods; manifold learning; IMAGE RE-RANKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 50 条
  • [1] A correlation graph approach for unsupervised manifold learning in image retrieval tasks
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    NEUROCOMPUTING, 2016, 208 : 66 - 79
  • [2] Unsupervised affinity learning based on manifold analysis for image retrieval: A survey
    Pereira-Ferrero, V. H.
    Lewis, T. G.
    Valem, L. P.
    Ferrero, L. G. P.
    Pedronette, D. C. G.
    Latecki, L. J.
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [3] UNSUPERVISED MANIFOLD LEARNING BY CORRELATION GRAPH AND STRONGLY CONNECTED COMPONENTS FOR IMAGE RETRIEVAL
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1892 - 1896
  • [4] Unsupervised nonlinear manifold learning
    Brucher, Matthieu
    Heinrich, Christian
    Heitz, Fabrice
    Armspach, Jean-Paul
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 673 - +
  • [5] Unsupervised manifold learning of collective behavior
    Titus, Mathew
    Hagstrom, George
    Watson, James R.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)
  • [6] Unsupervised Skeleton Learning for Manifold Denoising
    Sun, Ke
    Bruno, Eric
    Marchand-Maillet, Stephane
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2719 - 2722
  • [7] Unsupervised learning-based recognition and extraction for intelligent automatic video retrieval
    Balasundaram, Sathiyaprasad
    Krishnamoorthy, Seetharaman
    PHOTOGRAMMETRIC RECORD, 2022, 37 (180): : 453 - 489
  • [8] Unsupervised manifold learning of collective behavior
    Titus M.
    Hagstrom G.
    Watson J.R.
    PLoS Computational Biology, 2021, 17 (02):
  • [9] Unsupervised manifold learning through reciprocal kNN graph and Connected Components for image retrieval tasks
    Guimaraes Pedronette, Daniel Carlos
    Fernandes Goncalves, Filipe Marcel
    Guilherme, Ivan Rizzo
    PATTERN RECOGNITION, 2018, 75 : 161 - 174
  • [10] Unsupervised Learning of Spatio-Temporal Representation with Multi-Task Learning for Video Retrieval
    Kumar, Vidit
    2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 118 - 123